

Ubiquitous and Secure Networks and Services Redes y Servicios Ubicuos y Seguros

Unit 3: Architectures and Models

José Fernán Martínez Ortega jfmartin@diatel.upm.es, jf.martinez@upm.es

UNIT 3: Architectures and Models

INTRODUCTION

Evolution to pervasive computing

Distributed System Features

Heterogeneity Extensibility Scalability □ Fault management Transparency

Architectural Models

- □ To identify the functionality of the simple system components.
- To manage problems associated to component localization in the network (distributed patterns, information, workload).
- To analyze relationships among components (communication patterns),
- □ Starting point:
 - O Servers
 - O Clients
 - Peer to Peer ...

General Software Levels

Platform

Hardware.
Operating System.
Low level software layers.

Middleware

- "Heterogeneity problem".
- Application and services

Towards a Middleware approach

¿What is distributed cooperation?

Application/Service

So...What about WSN?

UNIT 3: Architectures and Models

PLATFORM LAYER

Bird's Eye View

Tmote Sky

Developed in the Berkeley University.

□ Features:

diatel

- **OUSB** interface.
- O Built-in antenna − 125 mts.
- Flash memory for software installation.

Tmote Sky

Processing Unit		Interfaces		
Microcontroller	MSP430F1611	Digital	6 GPIO	
RAM	10 KB RAM	Analogical	6 ADC	
ROM	48 KB (FLASH)	Serial	I2C, SPI, USB	
Speed	8 MHz	Sensors	Humidity, light, temperature	
Operating	TinyOS and Contiki	Gateway	Ethernet	
System				
Radiofrequency			01	hers
Transceiver	Chipcon CC2420	Power source		AA Batteries
Band	2400 – 2483.5 MHz	Power idle		5.1 uA
Bit rate	250 Kbps	Power (Rx/Tx)		19.5 mA / 21.8 mA
Modulation	O-QPSK	Cost		Unit 130 \$
Range	(out-door), (in-door)	Gateway		Tmote Connect
Protocol	802.15.4	Licence		BSD (Op. System)
Security	802.15.4	Extras		None

Crossbow Family

Monitorization and data acquisition

- Radio 916 MHz -2.4 GHz (ZigBee compliant)
- O Different HW and SW platforms
- Families:
 - First Generation (MICAz, MICA 2, Telos B)
 - Second Generation (Imote 2)

Different Crossbow motes. More information at <u>www.xbow.com</u>. Used under Crossbow's terms of use: <u>http://www.xbow.com/terms-of-use.html</u>.

Imote 2

Processing Unit		Interfaces		
Microcontroller	Intel PXA271	Digital	DIO	
RAM	256 KB	Analogical	8 x ADC	
ROM	32 MB (FLASH)	Serial	3 UART, 2 I2C, 2 SPI, , SDIO, GPIO	
Speed	13-416 MHz	Sensors	Sensor plug-in interface	
Operating System	TinyOS	Gateway	Mini-USB(local) or Ethernet (base station)	
Radiofrequency			(Others
Transceiver	CC2420	Power source		AA Batteries
Band	2.4 GHz	Power idle		31 uA
Bit rate	250 Kbps	Power (Rx/Tx)		44 mA / 44 mA
Modulation	O-QPSK	Cost		404 \$ unit
Range	75-(out-door), 20- (in-door)	Gateway		None
Protocol	No specified	Licence		BSD (op. syst.)
Security	No specified	Extras		None

Radiofrequency Technologies

	Bluetooth	ZigBee	Z-wave	WiFi	Wavenis
Frecuency Band		2.4 GHz/	868MHz	2.4 GHz/	433/868/915MHz
	2.4 GHZ	5.2 GHz	915MHz	5.2 GHz	(2,4GHz)
Data speed	1 Mbps	250 Kbps	few Kbps	5.5/11 MHz	4,8 / 19,2 / 250 Kbps
Deployment	000	$\overline{\otimes}$	\odot	000	00
Reliability	000	000	$\overline{\otimes}$	000	000
Low consumption	\odot	00	00	\approx	000
Range	8	$\overline{\mathfrak{S}}$	9	0	000
Low cost	\odot	00	00	\otimes	000
Range in-door	⊜ (10m)	🙁 (20m)	© (50m)	☺ (50m)	ා (until 200m)
Standard protocol	000	000	Ś	\odot	00
Availability	000	$\overline{\mathfrak{S}}$	000	000	000

Open issues

Size vs. costs. Integration of new functionalities (circuits). □New encapsulation formats. □New personalized solutions. Power consumption (harvesting). □MAC, HW components and software must be improved. Consumption reduction. □Uncorrelated antennas. Reliability (embedding QoS and security)

Operating Sytems

SOS

TinyOS - Berkeley

- □ Application = scheduler + graph of components.
 - O Compiled into one executable.
- Event-driven architecture.
- □ Single shared stack.
- □ No kernel/user space differentiation.

UNIT 3: Architectures and Models

MIDDLEWARE LAYER

WSN Software Technologies

Design Analysis for WSN.

diatel

Distribution.
Data source availability.
Bandwidth and resources.
Cooperating applications.
Quality of Service (QoS).
Security.

Middleware at whole!!

Middleware must provide:

Appropriate interfaces for a wide range of applications.
 Run-time environment for coordination.
 Mechanisms to achieve efficient resource use.

□ Middleware services:

- Independency of network services and low level layers.
- Facilities for interacting with other innetwork applications.
- O Increase availability and reliability.
- Guaranteeing scalability.

WSN Middleware Features

Nodes are small-scale devices.
 Nodes and sensors (actuators) are limited by power supply (batteries) – Harvested!
 Nodes are likely to fail (batteries, environment).
 Nodes are resource constrained.

WSN Middleware Challenges

- Supporting the configuration lifecycle
- Working in network with thousands of nodes
- Providing abstraction of the network
- Fulfilling main requirements: energy efficient, reliability and scalability

- communication
- Providing self-configuring and self
 - management
- Paying attention to the time and localization concepts
- Providing application knowledge in the WSN infrastructure
- Supporting real-time applications needs
- Supporting security issues

WSN Middleware Approaches

Maté – Virtual Machine

Figure 2: Maté Architecture and Execution Model: Capsules, Contexts, and Stacks. [Levis2002] Levis, P and Culler, D. "Maté: A Tiny Virtual Machine for Sensor Networks". 10th International Conference on Architectural Support for Programming Languages (ASPLOS X), 2002.

Agents in WSN

	Agents	WSN Nodes
Autonomy	Capacity of maintain some task under control without external attention.	Capacity to reach objective without network intervention.
Asynchronous working capacity	Start to work when the agents receive some information.	It senses stimulus and reacts.
Collaboration and coordination	The agents exchange data for achieving a common task.	The nodes need to work together for reducing interactions among nodes.
Communication	Capacity to interaction with other agents.	Capacity to exchange data.
Objective driven	The agents can reach their objectives with some information.	The sensed data by the nodes are used in order to reach network goals
Reactivity	Capacity to provide a result when something happens.	Capacity to detect and react to unforeseen events.
Mobility	Capacity to migrate.	Capacity to migrate between nodes.

UNIT 3: Architectures and Models

USE CASE: AN EVENT-DRIVEN MIDDLEWARE: MICRO SUBSCRIPTION MANAGEMENT SYSTEM (µSMS)

Origin of This Middleware Approach

The µSMS Middleware was developed as part of a project of the 6th Framework Programme:

Solving Major Problems in Micro Sensorial Wireless Networks

µSWN Project was working for 3 years from October 2006 to November 2009.

The µSWN Consortium was composed of 10 partners from different European countries: Spain, France, Greece and Lithuania.

Origin of This Middleware Approach

□ µSWN's project main objectives:

- To research generic and reusable Software-Hardware solutions for WSNs that are common to existent and potential future applications.
- To research and develop a Middleware architecture enabling a platform for reusable components to ease future developments regarding similar systems under real-time restrictions.
- To apply WSN technology to three real world scenarios: Surveillance, Multi-tracking and Critical-monitoring.

diatel

The Middleware Architectural Context

Architectural Approach

Middleware Components

Communication between receptacles and interfaces can be performed through events

O Basic operations: (Un)*Publications* and (Un)*Subscriptions*

Two interaction modes: PUSH and PULL.

Direct calls to component methods can be also enable

Middleware Kernel

[Martinez2011] J. F. Martínez, M. S. Familiar, I. Corredor, A. B. García, S. Bravo and Lourdes López, "Composition and deployment of e-Health services over Wireless Sensor Networks". Mathematical and Computer Modelling, Elsevier, vol. 53, num. 3-4, pp. 485-503, 2011.

Data Unit: Event

Event Type: Type of event that will be dispatched.E.g. Temperature Threshold

key-value pairs: event's useful data.
 E.g. Celsius-38°; Farenheit-100°

[Martinez2011] J. F. Martínez, M. S. Familiar, I. Corredor, A. B. García, S. Bravo and Lourdes López, "Composition and deployment of e-Health services over Wireless Sensor Networks". Mathematical and Computer Modelling, Elsevier, vol. 53, num. 3-4, pp. 485-503, 2011.

Publications and Subscriptions

A Subscription generates an entry in Event Routing Table OEventType, ProducerID, ConsumerID and Event Filter

© José Fernán Martínez Ortega

diatel

Event dispatching (intra-node)

Event dispatching (inter-node)

[[]Martinez2011] J. F. Martínez, M. S. Familiar, I. Corredor, A. B. García, S. Bravo and Lourdes López, "Composition and deployment of e-Health services over Wireless Sensor Networks". Mathematical and Computer Modelling, Elsevier, vol. 53, num. 3-4, pp. 485-503, 2011.

µOpen Distributed Inter-Component Communication Protocol □ Event dispatching (inter-node)

[Martinez2011] J. F. Martínez, M. S. Familiar, I. Corredor, A. B. García, S. Bravo and Lourdes López, "Composition and deployment of e-Health services over Wireless Sensor Networks". Mathematical and Computer Modelling, Elsevier, vol. 53, num. 3-4, pp. 485-503, 2011.

System deployment at Versme Sanatorium, Birstonas (Lithuania)

[Martinez2011] J. F. Martínez, M. S. Familiar, I. Corredor, A. B. García, S. Bravo and Lourdes López, "Composition and deployment of e-Health services over Wireless Sensor Networks". Mathematical and Computer Modelling, Elsevier, vol. 53, num. 3-4, pp. 485-503, 2011.

Three real world validation scenarios Surveillance, Multi-tracking and Critical Monitoring

Surveillance Scenario

- **Objectives**
 - To detect intruders, patients and medical staff crossing a virtual perimeter rounding the Sanatorium
- **O** Deployment
 - Fixed nodes connected to PIRs
 - Bracelet nodes (mobile nodes)

uSWN CAD

[Martinez2011] J. F. Martínez, M. S. Familiar, I. Corredor, A. B. García, S. Bravo and Lourdes López, "Composition and deployment of e-Health services over Wireless Sensor Networks". Mathematical and Computer Modelling, Elsevier, vol. 53, num. 3-4, pp. 485-503, 2011.

Surveillance Agent

Fixed node with PIRs

[Martínez2010] J. F. Martínez, S. Bravo, A. B. García, I. Corredor, M.S. Familiar, L. Lopez, V. Hernandez and A. Da Silva, "Pervasive surveillance-agent system based on wireless sensor networks: design and deployment", Measurement Science and Technology, vol. 21, num. 12, 2010.

Multi-tracking scenario

- **Objectives**
 - To track patients wearing bracelet nodes
- **O** Deployment
 - Grid of fixed nodes (beacons)
 - > Bracelet nodes (mobile nodes)

Multi-tracking Agent

Martinez2011] J. F. Martínez, M. S. Familiar, I corredor, A. B. García, S. Bravo and Lourdes López Composition and deployment of e-Health service: ver Wireless Sensor Networks". Mathematical and computer Modelling, Elsevier, vol. 53, num. 3-4, pp 85-503, 2011.

Critical Monitoring Scenario

- **Objectives**
 - > To monitor vital signs of patients (heart rate and body temperature)
 - To monitor environmental parameters (temperature and humidity)

O Deployment

Fixed nodes (out-door and in-door deployment)

Critical Monitoring Agent

Bracelet nodes (mobile nodes) with biomedical sensors Agent

Out-door deployment

In-door deployment

Bracelet node

References

- [Fok2006] Fok, C. Roman, G., Lu, C. "Agilla: A Mobile Agent Middleware for Sensor Networks." School of Engineering and Applied Science. Washington University, St. Louis. 2006.
- [Hadim2006] Hadim, S., Mohamed, N. "Middleware Challenges and Approaches for Wireless Sensor Networks". IEEE DISTRIBUTED SYSTEMS ONLINE, Vol. 7, No. 3; March 2006.
- [Levis2002] Levis, P and Culler, D. "Maté: A Tiny Virtual Machine for Sensor Networks". 10th International Conference on Architectural Support for Programming Languages (ASPLOS X), 2002.
- [Liu2003] T. Liu and M. Martonosi. "Impala: A middleware system for managing autonomic, pararell sensor systems" Symposium on Principles and Practice of Pararell Programming (PpoPP'03), June 2003
- [Lu2001] Lu, C. "Berkley Motes and TinyOS". <u>www.cs.virginia.edu/~cl7v/cs851-talks/tinyos_chenyang.ppt</u>
- [Martínez2010] J. F. Martínez, S. Bravo, A. B. García, I. Corredor, M.S. Familiar, L. Lopez, V. Hernandez and A. Da Silva, "Pervasive surveillance-agent system based on wireless sensor networks: design and deployment", Measurement Science and Technology, vol. 21, num. 12, 2010.
- [Martinez2011] J. F. Martínez, M. S. Familiar, I. Corredor, A. B. García, S. Bravo and Lourdes López, "Composition and deployment of e-Health services over Wireless Sensor Networks". Mathematical and Computer Modelling, Elsevier, vol. 53, num. 3-4, pp. 485-503, 2011.
- [Oracle] Oracle. "The Squawk Virtual Machine". labs.oracle.com/projects/squawk/squawk-rjvm.html
- [RUNES] "*Reconfigurable Ubiquitous Networked Embedded Systems*" http://www.ist-runes.org/]

Bibliography

- Analysis and validation of Wireless Sensor Networks Software Technologies. Luis D. Rosado, Advisor: José F. Martinez. *Final project*, ETSIT – UPM January 2008.
- Composition and deploying of e-Health services over Wireless Sensor Networks José F. Martínez, Miguel S. Familiar, Iván Corredor, Ana B. García, Sury Bravo, Lourdes López, Journal of Mathematical and Computer Modelling, Special issue: Telecommunications Software Engineering: Emerging Methods, Models and Tools, Elsevier, ISSN: 0895-7177, 2010.
- Middleware for Self-adaptative Environments in Wireless Sensor Networks, Iván Corredor, Master Thesis Dissertation, Advisor: José-F Martínez, EUITT – UPM, October 2009
- Pervasive Surveillance-Agent System based on Wireless Sensor Networks: Design and Deployment. José F Martínez, Sury Bravo, Ana B García, Iván Corredor, Miguel S Familiar, Lourdes López, Vicente Hernández and Antonio Da Silva, Journal of Measurement Science and Technology, Special Issue on Wireless Sensor Networks, December 2010, IOPscience. ISSN: 0957-0233.
- Problem Solving for Wireless Sensor Networks, Ana-B García, José-F Martínez, Juan-M López, Anggliki Prayati, Luis Redóndo., Springer Verlag Series: Computer Communications and Networks, ISBN 978-1-84800-202-9, 2008.
- Reasoning System for Wireless Sensor Networks, Marta Zuazua, Master Thesis Dissertation, Advisor: José-F Martínez, EUITT – UPM, September 2010
- Virtualization on Wireless Sensor Networks, Patricia Vicente, Final project, Advisor: José F. Martinez, EUITT UPM September 2010.
- Wireless Sensor Network Subscription Management System, Miguel S. Familiar, Final project, Advisor: José F. Martinez, EUITT – UPM February 2009.

More WSN resources. http://www.diatel.upm.es/jfmartin/jfmartin_ENG.html