

Ubiquitous and Secure Networks and Services Redes y Servicios Ubicuos y Seguros

Unit 5: Ubiquitous Systems Security

Lourdes López Santidrián <u>llopez@diatel.upm.es, lourdes.lopez@upm.es</u>

UNIT 5: Ubiquitous Systems Security

VULNERABILITIES OF UBIQUITOUS NETWORKS AND SERVICES

Why WSN are vulnerable against attacks?

The sensor nodes are constrained by:

OBattery life.

- OComputational capabilities.
- OMemory.
- OCommunication band.

Is easy to physically access to nodes:
 Human or machine can reprogram them.

OHuman or machine can destroy them.

- □ The communication channel is public.
- It is difficult to monitor and control the distributed elements.

Security Threats

Common Attacks:

- OEavesdropping (passive).
- OData injection (active).
- OMessage modification (active).
- OMessage replay (active).

Denial of Service Attacks (DoS):

- OJamming: target the communication channel.
- OPower exhaustion: target the nodes.

Node Compromise:

OAn attacker can read or modify the internal memory of a node.

Security Threats

Side-channel Attacks:

OMonitoring of the nodes' physical properties.

OAcquisition of security credentials (secret keys).

Impersonation Attacks:

OSybil attack (creation of fake identities).

OReplication attack (creation of duplicate identities).

Protocol-specific Attacks:

ORouting protocols.

Spoofed Routing Information.

HELLO Flood Attack.

OAggregation protocols: falsifying information.

• Time synchronization protocols.

Confidentiality

- Only the desired recipients can understand the message.
- OMay be not mandatory.
- Integrity
 - If the data produced and sent over the network are altered, the receiver will have a proof.
 - OIn most cases it is a mandatory feature.

Authentication

- A receiver can verify that the data is really sent by the claimed sender.
- Olt is mandatory if the network needs a barrier between external and internal members.

Authorization

Olt states that only authorized entities can be able to perform certain operations.

Availability

• The users of a WSN must be capable of accessing its services whenever they need them.

Freshness

OThe data produced by the WSN must be recent

Given Secrecy Forward and Backward Secrecy

Forward secrecy: where a node should not be able to read any future messages after it leaves the network
Backward secrecy: where a node is not able to read a previously transmitted message.

□ Self-organization

ONodes must be independent and flexible in order to react against problems.

Auditing

• The elements of a WSN must be able to store any events that occur inside the network.

Non-repudiation

- A node cannot deny sending a message, or a recipient cannot deny the reception of a message.
- OEvidence that the message was sent is necessary.

Privacy and Anonymity

• The identity of the nodes should be hidden or protected.

UNIT 5: Ubiquitous Systems Security

CRYPTOGRAPHIC MECHANISMS AS THE BASIS OF THE SECURITY

Secret/Symmetric Key Cryptography

Secret/Symmetric Key Algorithms

	Time	CPU	Power	ROM
Algorithm	(ms)	Cycles	(µJ)	Memory (Kb)
SkipJack	2,16 (3)	15.925,2 (3)	51,4 (3)	19 (4)
RC5	1,50 (2)	11.059,2 (1)	36,00 (1)	16 (3)
RC6	10,78 (5)	79.478,7 (5)	258,72 (5)	16 (3)
TEA	2,56 (4)	18.874,4 (4)	61,44 (4)	15,5 (1)
XTEA	1,45 (1)	12.450,2 (2)	40,7 (2)	15,5 (1)
DES	608,00 (6)	4.482.662,4 (6)	14.592,00 (6)	31 (6)

Public/Asymmetric Key Cryptography

Public/Asymmetric Key Algorithm

Elliptic Curve Cryptography (ECC)

TinyECC

ECC-based signature generation and verification (ECDSA).
 Encryption and decryption (ECIES).
 Key Agreement (ECDH).

Hash Functions

One-way functions:
 If we have *m* (any size) and *H* hash function (digital fingerprint):
 h = *H*(*m*) with fix size.
 It is almost impossible calculate *m* from *H*¹(*h*)

Can be used to build:

- Message Integrity Code (MIC).
- O Message Authentication Code (MAC).
 - >Authentication.
 - ➢Integrity.

UNIT 5: Ubiquitous Systems Security

INTRUSION DETECTION

Definition of Intrusion Detection

Anomaly detection:

OAnalyze the network or system and infer what is "normal" from the analysis.
 OApplication of statistical or heuristic measures.
 OIf an event isn't "normal" → generate an alert

Misuse detection:

Know what an "attack" is.Detection of "attacks".

ID Components for WSN

Neighbor monitoring • Watchdog. Data fusion OLocal: neighboring nodes. • Global: overlapping areas. Topology discovery. **Route tracing**. □History.

UNIT 5: Ubiquitous Systems Security

SECURITY MANAGEMENT

Key Management

- □ Key Management Systems (KMS):
 - OCreation.
 - ODistribution.
 - OMaintenance of secret keys.
- IEEE 802.15.4 does not specify how secret keys should be exchanged.
- A key-exchange protocol is needed:
 - O"Key pool" Framework.
 - OMathematical Framework.
 - **ONegotiation Framework.**
 - OPublic Key Framework.

Security at WSN Standards

IEEE 802.15.4-2066 security:

- OConfidentiality: HW support for AES-128.
- OIntegrity: MIC or MAC.
- OReceived Message Authentication: Access Control List (ACL).

□ ZigBee 2006 and 2007 security:

O Standard Security.

OConfidentiality and Authentication at NWK and APS levels.

O"All nodes on the network trust each other".

ZigBee PRO security:

OHigh Security. ○

OMaster key for Symmetric-Key-Key-Exchange.