

- Pyramidal horn a x b dimensions where id propagated the fundamental mode TE_{10} . Aperture A x B, with A>a and B>b.
- Fields in the aperture are an expanded version from the fields within waveguide:

$$\vec{E}_{ay} = \hat{y} E_0 \cos\left(\frac{\pi x}{A}\right) e^{-j \cdot \beta \cdot \Delta R}$$

• The electrical field amplitude in the horn aperture changes as a cosine in the x direction and keeps uniform along y direction.

• Finally the electrical field in the aperture can be written as:

$$\vec{E}_{ay} = \hat{y}E_0 \cos\left(\frac{\pi x}{A}\right)e^{-j\cdot\beta\cdot\left[\left(x^2/2R_1\right) + \left(y^2/2R_2\right)\right]}$$

• Where E_0 is amplitude of the electrical field, and β is the phase constant which in the aperture is equal to the propagation constant in the free space if $A >> \lambda$:

$$\beta = k_0 \sqrt{1 - \left(\frac{\lambda}{2A}\right)^2} \approx k_0 = \frac{2\pi}{\lambda}$$

With λ the wavelength.

Pyramidal horn

- Radiation pattern of the horn antennas are called universal radiation patterns, because they can be used for any A and B.
- They are function of the maximum phase errors that exist in the aperture.
- These maximum phase errors are *t* for the H-plane and *s* for the Eplane, they are expressed as a multiple of 2π radians, and they are calculated from the maximum phase error δ_{max} in the aperture:

$$\delta_{\max} = \frac{k_0}{2R_1} \left(\frac{A}{2}\right)^2 = \frac{2\pi}{\lambda} \frac{A^2}{8R_1} = 2\pi t \Longrightarrow t = \frac{A^2}{8\lambda R_1}$$
$$\delta_{\max} = \frac{k_0}{2R_1} \left(\frac{B}{2}\right)^2 = \frac{2\pi}{\lambda} \frac{B^2}{8R_2} = 2\pi s \Longrightarrow s = \frac{B^2}{8\lambda R_2}$$

- With lobes at very high levels when aperture is large (about -19dB).
- The radiation pattern are calculated from the universal radiation patterns, which depend on the maximum phase error in the aperture *s*:

$$s = \frac{a^2}{2\lambda L}$$

• Electrical field phase in the aperture as a wave with spherical phase front.

Reflector antennas can be analysed using different methods which provide similiar results:

• Geometrical Optics (GO): It allows to calculate the fields over the aperture and then the radiated fields using the equivalent principles. It is based on the Fermat principle and the Snell's laws.

Physical Optics (PO): It calculates the radiated fields with the induced currents over the metallic reflector.

Geometrical theory diffraction (GTD): It provides us the best results for the radiated fields, overall for the secondary far lobes. They are analysed the direct rays and the diffracted rays in the edges.

Reflector types (II)

Cassegrain reflector: It is a combination of a parabolic primary concave mirror and a hyperbolic secondary convex mirror. They are usually used in optical telescopes where a high gain is required.

Cassegrain reflector: It is similar to the previous type, but instead of using a primary mirror with parabolic shape, it is used an elliptical mirror.

Multifeeding

Conformal surfaces

Conformal reflectors (I)

• The specifications are coverage contours in dBW

POLITÉCNICA

SSR

- The design consists on changing the shape of the reflector.
- A concrete surface must be set up, starting from a concrete canonical design: Paraboloidal, Cassegrainian...

Aperture optimization

• Conforming a reflector can improve the aperture efficiency.

POLITÉCNICA

SSR

- The goal is to get more uniform amplitude distributions in the aperture.
- The phase front must be plane in the aperture.
- Two constraints and two design elements: reflector and subreflector.

