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Printed líne

A printed line Consists of: 

Line : 

M lli fMetallic surface

Extremely thin surface (thickness: 10 – 50μm ⇒ typical: 18μm y 35μm )

Substrate :

Dielectric layer. Thickness: 0.003λ - 0.05λ
Dielectric Constants within the range: 1 ≤ εr ≤ 12

G d lGround plane. 
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Transmission Line Theory
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Transmission line model:Transmission line model:
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Basic Models

Microstrip Line  
StriplineStripline

Covered microstrip line

Coplanar

Suspended microstrip line 

Inverted microstrip line

Slot

Inverted microstrip line
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Features

B i F• Basic Features:

Line width w

Line thickness t

Line losses αc

S b t t thi k hSubstrate thickness h 

Substrate dielectric constant εr

Substrate losses: loss tangent tan(δ) Subs e osses: oss ge (δ)

Radiation losses αr

• Main parameters:p
Characteristic impedance Z

Effective dielectric Constant εeff
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[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991

Features

c
Phase velocity  vp :

L W l th λ
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Non-homogeneous dielectric: 

rr
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eff
gp

c
v

ε
0=

Non-homogeneous dielectrics: when we have several dielectric layers 
(multilayer structure) or even when εr, μr change, depending on the 
dielectric layer positiondielectric layer position.

The effective dielectric layer εeff takes into account the wave 
propagation inside non-homogeneous dielectric layers.
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Limitations

W h t Ad t i l ti⇒ We have to Adopt a compromise solution

Layer thickness hLayer thickness h

Reduce surface wave losses   ⇒ h

Increase bandwidth⇒ h

Substrate dielectric constant εr

Tiny structures ⇒ εr

Li idthLine width w

w << λg/2

Decrease undesired line radiation ⇒ w << λg/2Decrease undesired line radiation ⇒ w  λg/2
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Applications

• Feeding network:

L16  S90-120ETSIT - S.R. MOYANO

g

For antennas

• Printed circuits:

Filters

Dividers 

MixersMixers

…

ANTENNA DESIGN AND MEASUREMENT TECHNIQUES - Madrid (UPM) – March 2009



Microstrip Line

w

• The most common transmission structure for planar antennas.

• The main working mode is quasi-TEM ⇒ almost all the field is concentrated inside the
substrate.

• To avoid surface waves electrically thin substrate (0.003λ < h <0.05 λ)

• Dielectric constant εr : 2.2 < εr < 12.r r
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Microstrip Line

•Features:

Characteristic line impedance Z : ⇒ 0 05 ≤ w/h ≤ 100 ε ≤ 16 ⇒ 0 2% errorCharacteristic line impedance Z : ⇒ 0.05 ≤ w/h ≤ 100, εr ≤ 16 ⇒ 0.2% error
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[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.



Microstrip Line

• Typical dielectric substrates used to perform microstrip lines are:

RT-Duroid 5880 ε = 2 2RT Duroid 5880  εr  2.2

Alumina (ceramic, Al2O4 (97%)) εr = 9.8
• Real prototype width/thickness values within the range 101.0 ≤≤

h
w

• Real prototype characteristic impedance in the range 10 ≤ Z ≤ 200 ohms
h
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Covered microstrip line

• Considering the same dimensions as in a conventional microstrip the covered• Considering the same dimensions as in a conventional microstrip, the covered 
microstrip line has a lower impedance, due to the existence of a new ground 
plane.

F th i d Z ( i th ti l i t i ) th li idth i• For the same impedance Z (as in the conventional microstrip) ⇒ the line width is 
smaller.

• The effective dielectric constant εeff for the same dimensions (as in conventional 
microstrip) is lower.

• When   h2       ⇒ microstrip line

• When h ⇒ Z y ε
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• When   h2 ⇒ Z     y εeff

[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.



Covered microstrip line

•Features :

Characteristic impedance Z :
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⇒ ±0.1% error, 0.1 ≤ w/h ≤ 6;  ⇒ ± 0.2% error, 6 ≤ w/h ≤ 10
[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.

Covered microstrip line

Effective dielectric constant εeff :
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⇒ ±0.2% error , 0.01 ≤ w/h ≤ 100 y 1 ≤ εr ≤ 100 ;  
[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.



Suspended microstrip line

εr

εair

h

h2

w

The s spended microstrip line is sed hen lo losses are needed• The suspended microstrip line is used when low losses are needed.

• The effective dielectric constant εeff is reduced. For the same width (as in
microstrip line) ⇒ Z is higher.

• For the same impedance (as in microstrip line) ⇒ the line is wider.

• When h2 ⇒ microstrip lineWhen h2 ⇒ microstrip line

• When h2 ⇒ Z y εeff
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[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.

Suspended microstrip line

• Features:

Ch t i ti i d Z ± 0 2% ≤ 20Characteristic impedance Z : ⇒ ± 0.2% error, εr ≤ 20
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[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.



Inverted microstrip line

εr

εair

h

h2 w

• The inverted microstrip line is also used when low losses are desired• The inverted microstrip line is also used when low losses are desired.
• Effective dielectric constant εeff is reduced. For the same width (as in

conventional microstrip line) ⇒ Z is higher.
• For the same impedance Z (as in conventional microstrip) ⇒ the line is• For the same impedance Z (as in conventional microstrip) ⇒ the line is

wider.
• When h2 ⇒ microstrip line

Wh h ⇒ Z ( 1 Ai )• When h2 ⇒ Z y εeff (εeff ≈ 1, Air )
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[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.

Inverted microstrip linep

• Features:

Characteristic impedance Z : ⇒ ± 1% error, εr ≤ 20
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[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.



Stripline line

εairw
h εr

h/2

t

• For the same width ε and h/2 = h as in conventional microstrip line• For the same width, εr and h/2 = hmicrostrip as in conventional microstrip line 
⇒ Z is lower.

• For the same impedance as in conventional microstrip line (same εr and h/2 
h ) th li i= hmicrostrip ) ⇒ the line is narrower.
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Symmetric stripline

• Features:

Characteristic impedance Z : ⇒ 0.5% error, εr ≤ 20 y w/h > 0.1
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reff εε =
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[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.



Asymmetric stripline

εairh

h

air

εr

h2 w
t

• For the same dimensions (as symmetric stripline) ⇒ Z is lower.
• For the same impedance ⇒ the width is lower.
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[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.

Asymmetric stripliney p

• Features:

– Characteristic impedance Z : ⇒ 0.5% error, εr ≤ 20 y w’/h > 0.1
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reff εε
[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.



Coplanar

b

εr
h

a

•There is no ground plane.

d i d i b λ•In order to prevent superior mode propagation: b < λg

•Practical example: couplers, dipole feeding…
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[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.

Coplanar line

• Features:

Ch t i ti i d Z 2%– Characteristic impedance Z : 2% error,
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[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.



Coplanar line

13εr = 13
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Slot line

εr
h

w

• The slot line is a TE structure not a TEM oneThe slot line is a TE structure, not a TEM one.

• This structure needs a substrate with a high dielectric constant value εr (εr ≥ 10)
⇒ on behalf to concentrate propagating fields and decrease radiation.

• The slot line is combined with microstrip in designing directional couplers• The slot line is combined with microstrip in designing directional couplers,
branchlines...
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[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.



Slot line

• Features:
Characteristic impedance Z : ⇒ 2% error, 0.02 ≤ w/h ≤ 1
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[1] B. C. Wadell, “Transmission Line Design Handbook”, Artech House, London, 1991.

Typical losses for 
different linesdifferent lines

Typical losses with those structures when applying high 
frequency
(10 GHz)(10 GHz)

Network Losses (dB/m)

Waveguide 0 2Waveguide 0.2

Suspended line 1.8 – 3.0

Stripline 2.7 – 5.6

Mi t i li 4 6Microstrip line 4 - 6
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Substrates
Printed lines at high frequency need quality materials⇒ loss tangent : tan(δ) < 0.002

F f b f i d li 10 GHFeatures of substrates for printed lines at 10 GHz 

Dielectric constant: εr losses: tan(δ)

Epoxy fiberglass FR-4 4.4 0.01

Laminex 4.8 0.03

Taconic 2.33 0.0009

Kapton 3.5 0.002p

CuClad 2.17 0.0009

RT Duroid 5880

(teflon + glass fiber)

2.2 0.0009

(teflon + glass fiber)

Alumina

(Ceramic form of Al2O4)

9.9 0.0003

RT D roid 6010 10 5 0 002RT Duroid 6010

(PTFE1 ceramic)

10.5 0.002

GaAs (Gallium Arsenide)

(S i d di l i )

12.8 0.0006
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(Semiconductor dielectric)

1 Polytetrafluoroethylene (Teflon)

Substrate selection

Substrate thickness εr

Reduction in line radiation Quite little high

Small dimensions little high

Low Losses little low

Reduction in losses due to surface currents little low

Increase in band width big low

Thin substrates with high εr are used in microwave circuitry, as feedingThin substrates with high εr are used in microwave circuitry, as feeding 
network:

Advantages:
Lower line width.
Reduction in radiation and coupling effects, although they should not be 

neglected.
Disadvantaged:

Higher losses
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Higher losses.
Lower efficiency. 
Lower bandwidth.



Introduction

Transmission Lines Architecture

Some Feeding Devices
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λ/4 Adaptator

Z (d) Z (0)
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Power Divider

Z
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Bended Corner: To 
prevent  reflection
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0202 ZZ

Directional Coupler

Z02

34

Z 02

Z 02

• Gate 1 : input 

G 2 di1
2

• Gate 2 : direct output

• Gate 3 : isolated output

• Gate 4 : coupled output

1

A portion of the injected power (input) yields coupling in the alongside line
(coupled output), the rest flows through the coupled output.

Power relation between direct and coupled output is a designer choice.

Direct and coupled outputs have a signal phase delay (90º).
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p p g p y ( )

Ideally, there is no power at the isolated gate.



Hibrid Coupler  90º

• Gate 1 : input34
Z 2

Gate 1 : input

• Gate 2 : -90º output

• Gate 3 : -180º output

G 4 i l d

34

λ/4 λ/4Z Z 1 1λ/4

Z 2

• Gate 4 : isolated port
1 2

λ/4 λ/41 1λ/4
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01 ZZ =

2/02 ZZ =
3 dB coupler
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A portion of the injected power (1) reaches 3 with -180º phase delay), the
rest flows through the -90º output (2)

⎥
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⎣ −− 010 j

rest flows through the 90 output (2).

The output signals at 2 and 3 have a 90º phase delay, refered one to the
other.
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Ideally, there is no power at the isolated gate (4).

Circular Coupler (Rat Race)

• Gate 1 : input2 3λ/4 • Gate 2 : output -90º

• Gate 3 : isolated port

• Gate 4 : output -270º

2 3
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λ/4 Gate 4 : output 270
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3λ/4
The injected power at 1 reaches 2 and 4 with a phase delay of -/+90º

respectively.

3λ/4

The output signals at 2 and 4 have a 180º phase delay, referred one to
the other.
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Ideally, there is no power at the isolated gate (3).
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