

Printed líne

A printed line Consists of:

Line :

➤Metallic surface

>Extremely thin surface (thickness: $10 - 50\mu m \Rightarrow$ typical: $18\mu m y 35\mu m$)

Substrate :

- >Dielectric layer. Thickness: $0.003\lambda 0.05\lambda$
- Dielectric Constants within the range: $1 \le \varepsilon_r \le 12$

Ground plane.

Microstrip Line

- Typical dielectric substrates used to perform microstrip lines are:
 - > RT-Duroid 5880 $\varepsilon_r = 2.2$
 - > Alumina (ceramic, $Al_2O_4(97\%)$) $\varepsilon_r = 9.8$
- Real prototype width/thickness values within the range $0.1 \le \frac{w}{h} \le 10$
- Real prototype characteristic impedance in the range $10 \le Z \le 200^{''}$ ohms

- For the same impedance Z (as in the conventional microstrip) ⇒ the line width is smaller.
- The effective dielectric constant ϵ_{eff} for the same dimensions (as in conventional microstrip) is lower.
- When $h_2 \nearrow \Rightarrow$ microstrip line
- When $h_2 \searrow \Rightarrow Z \searrow y \varepsilon_{eff} \searrow$

[1] B. C. Wadell, "Transmission Line Design Handbook", Artech House, London, 1991.

•Features :

Characteristic impedance Z :

[1] B. C. Wadell, "Transmission Line Design Handbook", Artech House, London, 1991.

ANTENNA DESIGN AND MEASUREMENT TECHNIQUES - Madrid (UPM) – March 2009

 $\mathcal{L}_{impedance} \xrightarrow{\text{Geometric}}_{\text{constant}} \sqrt{\frac{\mu_0}{\varepsilon_0}}_{\mathcal{K}_g} = \frac{\sqrt{\frac{\omega_0}{\varepsilon_0}}}{\sqrt{\varepsilon_{eff}}} \frac{1}{2\pi} \ln \left(2\frac{\sqrt{1+\frac{a}{b}} + \sqrt[4]{4\frac{a}{b}}}{\sqrt{1+\frac{a}{b}} - \sqrt[4]{4\frac{a}{b}}} \right)$ $-\text{Effective dielectrc constant } \varepsilon_{eff} : 1\% \text{ error}$ $\mathcal{E}_{eff} = 1 + \frac{\varepsilon_r - 1}{2} \ln \left(2 \left(\frac{\sqrt{1+k_1} + \sqrt[4]{4k_1}}{\sqrt{1+k_1} - \sqrt[4]{4k_1}} - \frac{\sqrt{1+\frac{a}{b}} + \sqrt[4]{4\frac{a}{b}}}{\sqrt{1+\frac{a}{b}} - \sqrt[4]{4\frac{a}{b}}} \right) \right) \qquad k_1 = \frac{\sinh\left(\frac{\pi a}{4h}\right)}{\sinh\left(\frac{\pi b}{4h}\right)}$

[1] B. C. Wadell, "Transmission Line Design Handbook", Artech House, London, 1991.

- \Rightarrow on behalf to concentrate propagating fields and decrease radiation.
- The slot line is combined with microstrip in designing directional couplers, branchlines...

[1] B. C. Wadell, "Transmission Line Design Handbook", Artech House, London, 1991.

Substrates

Pr	inted	lines	s at 1	high	freque	ncy	need	quality	/ materials⇒	loss	tangent :	$tan(\delta)$	< (0.00	2
				<u> </u>	-	-		· ·			•	~ /			

	Dielectric constant: ϵ_r	losses: tan(δ)
Epoxy fiberglass FR-4	4.4	0.01
Laminex	4.8	0.03
Taconic	2.33	0.0009
Kapton	3.5	0.002
CuClad	2.17	0.0009
RT Duroid 5880	2.2	0.0009
(teflon + glass fiber)		
Alumina	9.9	0.0003
(Ceramic form of Al_2O_4)		
RT Duroid 6010	10.5	0.002
(PTFE ¹ ceramic)		
GaAs (Gallium Arsenide)	12.8	0.0006
(Semiconductor dielectric)		

ANTENNA DESIGN AND MEASUREMENT TECHNIQUES - Madrid (UPM) – March 2009

Substrate selection

	Substrate thickness	ε _r
Reduction in line radiation	Quite little	high
Small dimensions	little	high
Low Losses	little	low
Reduction in losses due to surface currents	little	low
Increase in band width	big	low

> <u>Thin substrates with high ε_r are used in microwave circuitry</u>, as feeding network:

Advantages:

- ≻Lower line width.
- > Reduction in radiation and coupling effects, although they should not be neglected.
- Disadvantaged:
 - ≻Higher losses.
 - ≻Lower efficiency.
 - ≻Lower bandwidth.

 \triangleright Direct and coupled outputs have a signal phase delay (90°).

► Ideally, there is no power at the isolated gate.

>The injected power at 1 reaches 2 and 4 with a phase delay of $-/+90^{\circ}$ respectively.

The output signals at 2 and 4 have a 180° phase delay, referred one to the other.

> Ideally, there is no power at the isolated gate (3).

References

- [1] B. C. Wadell, "Transmission Line Design Handbook", Ed. Artech House, London, 1991.
- [2] E. Hammerstad, O.Jensen, "Accurate Models for Microstrip Computer-Aided Design", IEEE MTT-S Symposium Digest, pp.407-409, June 1980.
- [3] S. J. Orfanidis, "Electromagnetic Waves & Antennas", 2004.
- [4] H. Howe, "Stripline Circuit Design", Ed. Artech House, London, 1982.
- [5] D.M. Pozar, "Microwave Engineering", Ed. John Wiley & Sons, 1980.
- [6] K.C. Gupta, R. Garg, I. Bahl and P. Bhartia, "Microstrip Lines and Slotlines", Artech House, London, 1996.
- [7] P. Barthia & al., "Milimeter wave microstrip and printed circuit antennas", Norwood, Mass, Ed. Artech House,1991.
- [8] Ansoft Ensemble, "Ansoft Ensemble: Getting Started and Tutorials", Versión 8.0 Copyright 1984-1999, Ansoft Coporation, 1999.