

Field Regions

Space surrounding an antenna is subdivided in:

POLITÉCN

<u>SSR</u>

- <u>*Reactive near field region*</u>: that portion of the near field region immediately surrounding the antenna, where the reactive field predominates.
- <u>Radiating near field region</u>: (Includes Fresnel zone): intermediate region, where the radiation fields predominate, but the angular field distribution depends upon the distance from the antenna.
- *Far Field (Fraunhofer) region*: the region of the field of an antenna where the angular field distribution is independent of the distance from the antenna.

$$r \geq \frac{2D^2}{\lambda} \quad y \quad r >> \lambda$$

D: Maximum dimension of the antenna

ANTENNA DESIGN AND MEASUREMENT TECHNIQUES - Madrid (UPM) – March 2009 5

• For monopoles and dipoles (length $\leq \lambda$), $R_{\text{far field}} \geq 10\lambda$ is used, because reactive field is negligible.

POLITÉCNIC

- For large reflectors in microwave band with circular aperture with $D \gg \lambda$, $R_{far field} \ge 2D^2/\lambda$ is used, because of the phase errors at the aperture.
- For base station antennas (arrays with height $h \gg \lambda$), $R_{far field} \ge 2h^2/\lambda$ is used, because of the phase errors at the aperture.

ANTENNA DESIGN AND MEASUREMENT TECHNIQUES - Madrid (UPM) – March 2009 12

• Close areas (normally shielded) covered by electromagnetic absorbing material, that simulate free space propagation conditions, due to the absorption of the radiation absorbing material (RAM).

• <u>Advantages</u>:

- All weather operation.
- *Control of the environment* (*temperature, cleanness* ...)
- Security.
- Freedom from interference.

Near-field systems: Spherical, planar, cylindrical

Near field systems

• The radiated field is **measured in a surface** (plane, cylinder or sphere) **near to the AUT**, and the far field is obtained using a **transformation** algorithm.

• Advantages:

- Less use of space,
- Indoor systems advantages (independent of weather conditions...),
- The far field is obtained without the error due to the finite distance.

• Drawbacks:

- More complex and precise exploring systems are required,
- Transformation software based on modal analysis (with plane, cylindrical or spherical waves),
- A probe calibration is necessary.

POLITÉCNICA UPM antenna measurement ranges

Planar System:

<u>SSR</u>

Dimensions: 6 meters lower horizontal guide 1 meter supporting cart 5.5 meters tower upper horizontal guide at 2 meters

- 3 high precision linear elements assure the scanner high precision.
- The lower horizontal guide is a **linear ball spline**, that allows a free rotation of the vertical tower.
- The tower leans on the upper horizontal guide.
- <u>Scan area</u>: 4.75 x 4.75 meters
- Frequency band: 0.8 40 GHz
- Horizontal axis velocity: 10 cm/sec
- Vertical axis velocity: 33 cm/sec
- z errors < 0,34mm peak to peak in the scan area

ANTENNA DESIGN AND MEASUREMENT TECHNIQUES - Madrid (UPM) – March 2009 29

Cylindrical near-field system

In the <u>cylindrical near-field system</u>, the coupling equation relates the measured values with the probe correction coefficients and the AUT transmission coefficients.

With 2 set of measured values for each polarization & the probe correction coefficients, the AUT transmission coefficients could be derived.

>Then, with these **AUT transmission coefficients**, the θ -components & ϕ -components of the far-field can be obtained.

→ Far-field:

$$E_{\theta}(\theta, \phi) = j \sin \theta \sum_{n=-\infty}^{\infty} j^n b_n (k \cos \theta) \cdot e^{jn\phi}$$

 $E_{\phi}(\theta, \phi) = \sin \theta \sum_{n=0}^{\infty} j^n a_n (k \cos \theta) \cdot e^{jn\phi}$

POLITECNICA UPM antenna measurement ranges

Cylindrical and Spherical System:

- Sharing elements with the planar system.
- <u>Cylindrical</u>: **AUT on Azimuth positioner** and **probe on scanner y-axis**.
- <u>Spherical system</u>: AUT on Roll over Azimuth
- Frequency band: 1 40 GHz

SSR

- Linear slide to adjust measurement distance.

CYLINDRICAL SYSTEM

- The idea is to form a **planar wave** around the AUT using **reflector** systems.
- They are used for measuring antennas in far field and for measuring object RCS.
- Don't need field transformation, the measurements are obtained in far-field.
- <u>LIMITATIONS</u>:
 - → Complex & big structures needed, so the chamber dimensions must be higher.
 - \rightarrow Their **precisions** are, in general, **lower** than in near field systems.
 - \rightarrow Mainly related with the **flatness of the field in the quiet zone:**
 - Desired amplitude constant to a fraction of a dB,
 - Desired phase flat to few degrees.
 - → At higher frequencies, limited by the tolerances of the reflectors surfaces.
 - \rightarrow At lower frequencies, limited by the electrical size of the absorber pyramids.

→ GAIN in a given direction:

"The ratio of the radiation intensity, in a given direction, to the radiation intensity that would be obtained if the power accepted by the antenna were radiated isotropically".

→ <u>REALIZED GAIN</u>:

"The gain of an antenna reduced by the losses due to the mismatch of the antenna input impedance to a specified impedance".

$$\mathbf{G}_{\mathsf{R}} = \mathbf{G} \cdot (\mathbf{1} - |\boldsymbol{\Gamma}_{\mathsf{in}}|^2)$$

POLITÉCNICA Softv	ware PROCENCA (GR-UPM)
Archevo Configuración Gidluos Ayuda PANEL DE CONFIGURACIÓN E QUIPOS Esterico. EQU DIRECTOR DIRECTOR.DIR LÍMITES Esterico.LIM CALIBRACIÓN PROCESADO DE DALOS RESULTADOS	PANEL INFORMATIVO TIPO DE MEDIDA FICHERO DE REPRES ADQUISICIÓN DE DATOS FICHERO DE REPRES DATOS FICHERO DE DATOS Clasticación COEFAULTS Fichero de Datos INTRANSMITARRAY LENTE 12 GH2 Desopición CNAMARA C.\Documents and Settings\pablo\Escritorio\PR0CENCA_v4.0 Est polar\Esterico.LIM SONDA Tipo Simple Cal. Set VIENTE IZO Polarización Ambas (H/V) PARAMETROS Frecuencia (GH2) Añadir-> 12.000 Potencia (dBm) 18.00 Potencia so BW/4F (Hz pare el PNA) 128
EJECUTAR ADQUISICIÓN EJECUTAR PROCESADO DE DATOS EJECUTAR REPR. DE RESULTADOS BESET SALIR ELESET SALIR	Ficheros de Configurado Titos de Medida Campo Próx. Estér. Polar. Mini 12000 EX0 FOLL Campo Próx. Estér. Polar. Binido FOLL 0.00 175.00 50.00 Borrar Fichero de EJE ANG. I. (*) ANG. F. (*) INCRTO. (*) V.POSIC.(%) Borrar Fichero de EJE ANG. I. (*) ANG. F. (*) INCRTO. (*) V.POSIC.(%) V.BARR.(%) Borrar Fichero de EJE ANG. I. (*) ANG. F. (*) INCRTO. (*) V.POSIC.(%) V.BARR.(%) Borrar Fichero de EJE ANG. I. (*) ANG. F. (*) INCRTO. (*) V.POSIC.(%) V.BARR.(%) Distancia (cm) 550.00 Radio ABP (cm) 10.00 N* Modos 36 ACCEPTAR CANCELAE AYUDA AYUDA 2 GaINCL ES 2 12:29
ANTENNA DESIGN	Measurement definition

