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Linear Antennas

• Linear antennas are considered to be those antennas that imply the use 
of electrically thin conductors (wavelength >>conductor diameter).

• Electric current flows over the conductor surface.

• In order to calculate radiated fields in these antennas, conductors are 
modeled as if they were current lines with no diameter. Its equivalent 

i h f f h l d lcurrent is the surface current of the real model.
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Linear Antennas

• Paying attention to the geometry, it is necessary to calculate the potential vector

Potential Vector:
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• Potential vector allows us to obtain the electric field distribution:
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The electric dipole
2

L

• Mainly, an electric dipoles formed by two       wires working together.
2

L
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Although it is possible to calculate the analytical
current distribution over the structure it isI(z)
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current distribution over the structure, it is
preferable to assume some approximate results
using Transmission line theory
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In that conditions, we obtain the current distribution
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The electric dipole
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• The model yields a quite good agreement with the analytical 
result when considering  λ

=L
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Current distribution for different dipole lengths: MoM solutionz

z
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Current distribution for different dipole lengths: MoM solution

Short dipole: Hertz dipole:
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L=λ/2 L=λL<λ/2
IIN=Im

IIN=0

The electric dipole

L L

Current distributions calculated using Moment Method
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Radiated Field
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Radiated Field

Finite Dipole
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Radiated Field
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Finite Dipole

Far potential vector:
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φ Linear Polarization throughout θ

Radiated Power
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Radiation Parameters

Normalized Field diagrams:
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Multilobe Diagram

L=0.5λ L=λ L=1.5λ

Directivity: D0=1,64 = 2,15 dBi D0=2,41 D0=2,17
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Rradiation: Rrad=73 Ω Rrad=∞ Ω Rrad=99,5 Ω

Input Impedance

Input impedance: (ZIN=Re+jXe)

L/2a

ZIN(λ/2)=73+j42,5 Ω when a → 0

a=dipole radius

L/λ
Resonance Condition
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ANTENNA DESIGN AND MEASUREMENT TECHNIQUES - Madrid (UPM) – March 2009

L/λ

L/2a



Dipole Feeding - Baluns

– Baluns are devices that transform balanced current lines into unbalanced 
ones Its name comes from: “balun” = balanced to unbalancedones. Its name comes from: balun  = balanced to unbalanced.

– Baluns allow us to feed symmetric structures in a balanced way. y y

For instance: dipoles, fed with asymmetric transmission lines, coaxial 
wires… Used to transport energy from circuitry to the antenna. 

B l d li

+V/2

Bifilar

Shielded Bifilar

Balanced lines:

-V/2 Coplanar

Unbalanced lines:

εr

+V

Coaxial

Microstrip
εr

Unbalanced lines:
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0 Stripline εr

Baluns
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Non symmetric feeding Bazooka or Sleeve Balun Broken Balun
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Baluns

Equivalent Circuit L

b a
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For  h=λ/4  =>  ZBALUM= ∞Coaxial Líne
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Coaxial
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Linear Antennas
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Image Theorem

z ≥0 Valid Results
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Vertical Monopole over 
Ground PlaneGround Plane
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Vertical Monopoles

MW Monopole over ground. Monopole over ground plane  
i l t d ith t lli isimulated with metallic wires

Typical 
Radiation 
Pattern
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Linear Antennas
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Image Theorem: parallel dipoles 
over ground planeover ground plane

><

z z

Ih><
Ih

Ih

Ih

• When h<<λ, the radiated field is quite small due to the destructive 
summation of direct and reflected fieldsummation of direct and reflected field. 

• When h=λ/4 the radiated field is enhanced due to constructive summation 
in z direction.

• Considering finite ground planes (higher than λ x λ), the image theorem can 
be applied and undesired effects can be neglected.  
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Antenna mutual couplings

• When designing composed antenas, with several radiating elements, it is 
t t d t l li b t th l tnecessary to study mutual couplings between these elements.

– From both, the radiation point of view (feeding currents) and the circuit 
point of view (impedance), the global antenna behaves as a multiport 
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Easily related to generalized multipole analysis

N



Mutual Impedances between 
DipolesDipoles

(z=y) (z=y) (z=y)

kL/2

Mutual impedance between 
two identical parallel dipoles, 
one in front of the other, at λ/2 

distance
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Linear Antennas
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Yagi Antennas 

• These antennas are made of a lot of dipoles. Typically, only one of them is 
t ll f d ( ti d i i l t) th t h i d d t d texternally  fed (active, driving element); the rest have induced currents due to 

mutual couplings (director elements).

• Passive dipoles behave whether reflecting (reflectors) or guiding (director 
elements) radiated fields. 

Driving 
element

Reflectors

DiDirector 
elements

A Yagi antenna shows a radiation Gain, approximated by:

where n is the number of driving dipoles
)1log(10 ++= nGG Dipoleyagi
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where n is the number of driving dipoles.

Yagi Antennas 

• 2 elements Yagi Uda antenna

P i Di l l >l “R fl t ”

z

θ
I

• 2 elements Yagi-Uda antenna.

Passive Dipole: l2>l1 “Reflector”
l2<l1 “Director”

2l2
d

I1

I2

Active dipole2l1

( )E E E
I

e Ejkd= + ≈ +
⎛
⎜

⎞
⎟ ⋅21 cosθ θ φ

xd cosθ

( )E E E
I

e ET d= + ≈ +
⎝
⎜

⎠
⎟ ⋅1 2

1

1 ,θ φ

V Z I Z I1 11 1 12 2= + I Z2 12= Z
V

Z
Z1 12

2

- Circuital equations:
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Z I Z I21 1 22 20 = + I Z1 22
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2 elements Yagi Antenna: 
PatternsPatterns

H Plane (XZ Plane ): Ed(θ,φ=0)=constant;  F(θ,φ=0)=|1+I2/I1 exp(jkdcosθ)|( ) d( ,φ ) ; ( ,φ ) | 2 1 p(j )|

0,6

0 4

0,80,6

0 4

Director

0,4

0,2

Active

0,4

0,2

z

DirectorActive

-z

ActiveReflecto
r

a/λ= 0.003

a/λ= 0.003

E Plane (YZ Plane): The radiation patter must include the dipole radiation 
pattern (like a donut)

z

y
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pattern (like a donut).

Yagi antennas.

Typical dimensions:

Si l i d lSimulation model:
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Yagi Examples 

Diedric reflector Yagi

Usually, as active element, it is used a
bended dipole in order to increase
input impedance and band width.

Double reflector Yagi

Horn dipoles Yagi
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Linear Antennas

1.- Introduction

2.- The electric dipole, Balunsp ,

3.- Monopole over ground plane

4.- Dipoles Parallel to the ground planepo es a a e o e g ou d p a e

5.- Yagi-Uda Antennas

6.- Other linear antennas6. Other linear antennas 
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Loop Antennas

Aproximate current distribution: 

Short line with shortcircuit = uniform current

Short Loop (in terms of λ): Large Loop (in terms of λ):

l<<λ

b
l=λ/2

22 ≈= bC π Null
Max

Long line 
with 
shortcircuit

Null
Max

•multilobe pattern, high efficiency.
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Helix

• The helix geometry depends on the next• The helix geometry depends on the next 
values:

– D= Helix diameter. d

– C= Perimeter of the helix cylinder= πD

– S= length of one turn= πD tanα
α Inclination angle atan(S/C)

D

– α= Inclination angle= atan(S/C)

– L= one turn length

– N= Number of turns.

S

A

– A= Total length= NS

– d=  Wire diameter

• Helix antennas are usually  used in its axial 
radiation mode, when C is similar to λ.

C=πD

α

L

ANTENNA DESIGN AND MEASUREMENT TECHNIQUES - Madrid (UPM) – March 2009

radiation mode, when C is similar to λ.

S



Helix
Axial Radiation ModeAxial Radiation Mode

• Electrically big helix, with dimensions    
3/4<C/λ<4/3 y α ≈ 12º-15º:

Progressive current wave through the helix:– Progressive current wave through the helix: 
I(l)=I0exp(-jkl)

– Wide band: fsup/finf=1,78

Ω≈
λ

≈ 140
C

140Rin

– Approximately real impedance value:

λ

– Circular polarization (left or right handed, the 
same as the wire turn) 

⎞⎛
2

I(l)
– Quite directive radiation pattern. Secondary lobe 

level: -9 dB.

– Directivity:
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2Directivity:

Helix examples 
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