

Linear Antennas

Radiation Group Signals, Systems and Radiocommunications Department

SSI

Universidad Politécnica de Madrid Andrés García Aguilar, Pablo padilla de la Torre E-Mail: andreg@gr.ssr.upm.es, ppadilla00@gr.ssr.upm.es

ANTENNA DESIGN AND MEASUREMENT TECHNIQUES - Madrid (UPM) – March 2008

ANTENNA DESIGN AND MEASUREMENT TECHNIQUES - Madrid (UPM) – March 2009

• 2 elements Yagi-Uda antenna.

- Circuital equations:

 $\begin{pmatrix} V_1 = Z_{11}I_1 + Z_{12}I_2 \\ 0 = Z_{21}I_1 + Z_{22}I_2 \end{pmatrix} \qquad \qquad \boxed{ \frac{I_2}{I_1} = -\frac{Z_{12}}{Z_{22}} } \qquad \qquad \boxed{ Z_{1N} = \frac{V_1}{I_1} = Z_{11} - \frac{Z_{12}^2}{Z_{22}} }$

d

 $C=\pi D$

A

L

2009

- values:
 - D= Helix diameter.
 - C= Perimeter of the helix cylinder= πD
 - S= length of one turn= $\pi D \tan \alpha$
 - $\alpha =$ Inclination angle= atan(S/C)
 - L= one turn length
 - N= Number of turns.
 - A= Total length= NS
 - d= Wire diameter
- Helix antennas are usually used in its axial radiation mode, when C is similar to λ .

ANTENNA DESIGN AND MEASUREMENT TECHNIQUES - Madrid (UPM) – March

