

Limitations

Advantages	Drawbacks	
≻Low profile, reduced weight and	≻High Q (> 50) \Rightarrow narrow band : 1%-5%	
volume	► Spurious radiation (due to the transmission	
≻Low cost	line, wave surfaces, edge effects,) \Rightarrow that	
≻Robust mechanism (fabricated in rigid	damage the antenna performances	
surfaces)	➤Use quality substrate	
≻Easy to fabricate (photolithography	≻Power limitation \Rightarrow low power	
technology)	≻Input impedance: difficult to calculate and to	
≻ Versatile (frequency, polarization,	adjust in the design	
radiation pattern,)	\succ Cross polarization \Rightarrow poor polarization	
➤Compatible with active devices	purity (high crosspolar)! \Rightarrow Relation (CP/XP)	
≻Easy to fabricate arrays	> 20 dB	
≻Can be adapted to curved surfaces	Reduced efficiency in arrays (losses in the feeding network)	

POLITÉCNICA

SSR

> The materials that better adapt to the printed microstrip antennas design are the ones of $\varepsilon_r \le 5$ (near 1, as "foam" o air): higher radiation efficiency, wider bandwidth, low losses

	Thickness <i>h</i>	ε _r
To diminish the line radiations	thin	high
small dimension of antennas	thin	high
Low losses (surface waves,)	thin	low
To increase bandwidth	thick	low
Higher radiation efficiency	thick	low
Less sensibility versus tolerances	thick	low

 ➢ Better thick substrates and low dielectric constant ε_r ¿How to solve the contradictions ?
➢ Multilayer configuration ⇒ bandwidth techniques

Item 5 Polarization

5. Polarization

ANTENNA DESIGN AND MEASUREMENT TECHNIQUES

Beamwidth techniques POLITÉCNIC <u>Diminish the width W</u> (radiated dimensions) of the patch \Rightarrow increase the beamwidth in azimuth. Substrate thickness diminish \Rightarrow decrease the beamwidth in azimuth. The finite ground plane have an influence in the radiation pattern. It reduces the beamwidth because of the effect of the ground plane edge diffraction. With parasitic coplanar patches to the radiating element: - The radiation pattern is modified as: > The separation distance between these parasitic elements and the radiating element change. \blacktriangleright The width of the parasitic elements. If we separate more the parasitic elements with the radiating element and we increase the width of the parasitic elements. increase the **beamwidth** in azimuth ANTENNA DESIGN AND MEASUREMENT TECHNIQUES - Madrid (UPM) - March 2009

References

- J.R. James, P.S. Hall, "Handbook of Microstrip Antennas", IEE Electromagnetic waves series, Peter Peregrinus Ltd, 1989.
- [2] R. Garg, P. Barthia, I. Bahl, A. Ittipiboon, "Microstrip antenna design handbook", Ed. Artech House, 2001.
- [3] A Derneryd, "Linearly Polarized Microstrip Antennas", IEEE Trans. Antennas and Propagation, AP-24, pp.846-851, 1976.
- [4] I.J. Bahl, P. Bhartia, "Microstrip Antennas", Artech House, Dedham, 1980.
- [5] K. Hirasawa, M. Haenishi, "Analysis, Design and Measurements of small and low profile antennas", Ed. Artech House, London, 1992.
- [6] C.A. Balanis, "Antenna Theory, Analysis and Design", Ed. John Wiley & Sons, New York, 1997.
- [7] K.F. Lee, W. Chen, "Advances in Microstrip and Printed Antennas", John Wiley, 1997.
- [8] J.F. Zürcher, F.E. Gardiol, "Broadband Patch Antennas", Ed. Artech House, 1995.
- [9] D.M. Pozar, "Microstrip antenna aperture-coupled to a microstripline", Electronics Letters, vol. 21, pp. 49-50, January 1985.
- [10] D. M. Pozar, D.H. Schaubert, "Microstrip Antennas: The Analysis and design of Microstrip Antennas and Arrays". IEEE Press, 1995.
- [11] E. Aloni, R. Kastner, "Analysis of a dual circularly polarized microstrip antenna fed by crossed slots", IEEE Transactions on Antennas and Propagation, vol. 42, n°8, pp. 1053-1058, August 1994.
- [12] J. Torres Martín, "Diseño, Análisis, Construcción y Medida de antenas para el sistema PCS de Telefonía Móvil", Proyecto fin de carrera, 2004.
- [13] M. Martínez-Vázquez, "Antenas Integradas para Terminales Móviles de Tercera Generación", Tesis Doctoral, Valencia 2003.