

TEMA 30 : Hidrotecnias de corrección de cauces torrenciales (II)

JOSÉ LUIS GARCÍA RODRÍGUEZ

UNIDAD DOCENTE DE HIDRÁULICA E HIDROLOGÍA DEPARTAMENTO DE INGENIERÍA FORESTAL

E.T.S. DE INGENIEROS DE MONTES UNIVERSIDAD POLITÉCNICA DE MADRID

Resalto hidráulico. Casos

Número de Froude al pie del dique, en el supuesto que se trate de aguas limpias.

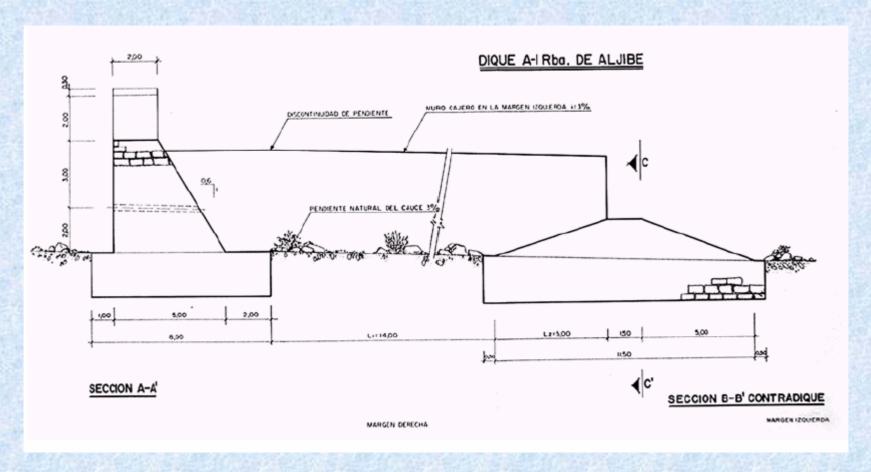
$$\mathbf{F}_1 = \frac{\mathbf{V}_1}{\sqrt{(\mathbf{g} \cdot \mathbf{h}_1)}}$$

Si F_1 = 1, es la situación de una sección crítica.

Si $1 \le F_1 < 1,7$, no es preciso realizar el disipador de energía, bastando con un zampeado de mampostería hidráulica u hormigón, para la protección del lecho y seguridad de la obra.

Si $1,7 \le F_1 < 2,5$, el empleo del disipador de energía es discrecional, en cualquier caso su efecto es poco relevante. Se puede utilizar el cuenco amortiguador.

Si $2,5 \le F_1 < 4,5$, se trata de una zona crítica en donde el resalto se estabiliza con dificultad. Si es posible, conviene evitar este intervalo, operando con las dimensiones del vertedero, a fin de modificar el régimen de descarga.


Si $4,5 \le F_1 < 9$, se trata de valores para los que el empleo de los disipadores de energía resulta adecuado.

Si $F_1 \ge 9$, se recomienda variar la geometría del vertedero.

Disipadores de energía

Fuente: Proyecto de restauración hidrológico-forestal de la rambla del Aljibe (Almería) (1991)

Disipadores de energía

$$H + h_0 + \frac{v_0^2}{2g} = h1 + \frac{Q^2}{2g \cdot b_1^2 \cdot h_1^2 \cdot \phi^2}$$

$$F1 = \frac{V_1}{\sqrt{g \bullet h_1}}$$

$$\frac{h2}{h1} = \frac{1}{2} \left[\left(\sqrt{1 + 8 \cdot F_1^2} \right) - 1 \right]$$

$$L_{_{1}}=5(h_{_{2}}-h_{_{1}})$$

$$p = h_2 - h_4$$

$$2p \le L_2 \le 4p$$

$$L_3 = e_{cd} = \frac{h_3 \cdot \gamma}{\gamma_s \cdot f}$$

$$h_4 = \sqrt[3]{\frac{q^2}{b_{cd}^2 \cdot g}}$$

$$h_3^{5/3} = \frac{n \cdot q}{I^{1/2}}$$

