
Sistemas Operativos I (I.T.I.S.) Fork-Pipe curso académico 2007-2008

Grupo de Innovación Educativa DMAE-DIA Departamento de Informática Aplicada 1

Experto A

Basic Operation
 Start the simulator. If all goes well the simulator will start up and look
something like Figure 1.

Figure 1: The main simulator window.

The figure shows one process with arrows representing standard input and
standard output. Push the green Run Until Done button on the right side of the window
and the program will step through its execution. After a few seconds the program will
terminate and the screen will look like Figure 2. The rectangles represent pipes. To exit
the simulator, push the pink Quit button that is in the upper right corner of the the
yellow ring diagram. To start the program from the beginning, find the Reset button in
the second column of buttons under the diagram.

Each process is represented by a circle with its process ID in the center. The first
process ID is always 100 and as processes are created by executing fork calls, the
process IDs are incremented, assuming no other processes are created in the system.
Arrows out of the process represent file descriptors that can be used for output. Arrows
into the process represent file descriptors that can be used for input. By default, standard
error is not displayed since it clutters the diagram.

When a pipe call is executed, a rectangle representing the pipe is displayed with
two new file descriptors connected to the process. A dup2 call moves the file descriptor
arrows appropriately and the fork call creates a new process. When processes and pipes
are created, they are positioned so that when the standard program is run, the processes
and pipes will appear in a ring. The processes and pipes can be moved around on the

Sistemas Operativos I (I.T.I.S.) Fork-Pipe curso académico 2007-2008

Grupo de Innovación Educativa DMAE-DIA Departamento de Informática Aplicada 2

screen by dragging them with the mouse. The pipes can be rotated by dragging close to
the corner of the pipe rectangle. The numbers that represent the file descriptors can also
be dragged.

Figure 2: The main simulator window.
To the right of the diagram is the program window. The arrow is above the

instruction to be executed next. The process ID of the active process is shown in the
Execute: pid button at the top of this window. Clicking on this button will cycle
through the active processes. Just below the program window are 5 labels showing the
name of the program (if it has one, the default program being called Ring of Processes)
and the values of the local program variables. These include the integers childpid and i,
the fd array and the contents of the buffer, buf. Below the diagram and the program are
6 columns of buttons for controlling the simulation.

There are two basic ways of running the program. The green Run Until Done
button on the rightmost column of buttons will start the program running and
automatically step through the program at a given rate. The rate can be modified using
the light green slider labeled Delay that is located below the button. The delay is in
milliseconds and represent the amount of time the simulator pauses after each step is
displayed. The limiting factor on the speed of execution is the time it takes to redisplay
after each step. When the Run Until Done button is pushed, it changed to a Stop
Running button which can be used to stop the execution. In this mode of operation, the
scheduling of the processes is controlled by the third column of buttons as described
later. The green Execute button executes one line of code. This can be used to single-
stop through the program. After each instruction is executed, you may push the
Execute: pid button at the top of the program to change which process will be executed
next.

Sistemas Operativos I (I.T.I.S.) Fork-Pipe curso académico 2007-2008

Grupo de Innovación Educativa DMAE-DIA Departamento de Informática Aplicada 3

Experto B

Simple Program Modifications
 The second column of buttons can be used to make simple modifications to the
program. The Onedirectional button loads the standard default ring program. The
Bidirectional button loads a more complicated version that creates a bidirectional ring
of processes. The Change Program button presents a list of loadable programs. Each
program listed corresponds to one line in the configuration file ringconfig. Adding lines
to this file allows you to choose additional programs. Programs can be created using a
standard text editor or by the simulator. The break button allows you to cycle through
possibilities for breaking out of the main for loop of the program. The table below gives
the relationship between the Break button and the code that is used:

Button Break: parent Break: child Break: parent and child Break: none

Code if (childpid)
 break;

if (!childpid)
 break; break; none

The Reset button starts the program from the beginning again.

Scheduling
The simulator allows control over several aspects of the scheduling of the processes
using the buttons in the third and fourth column. The After fork: button controls which
process executes after a fork. The possibilities are parent, child, either, and random.
Either means that either the child or parent will execute and the choice is made
randomly with equal probability. Random means that any ready process can execute and
the choice will be made among the ready processes with equal probability. The Choose
Process button controls which process will execute next when the running process loses
the CPU. A process can lose the CPU by having its quantum expire, by blocking on a
wait for child call, by blocking on a read from a pipe, or by terminating. The choices are
FCFS (the process that entered the ready queue first is chosen), Next (the ready process
with the next highest PID is chosen) and Random (a random ready process is chosen).
The Scheduling button controls the process scheduling algorithm. The default is no
preempt in which a process runs until it blocks or terminates. When RR is chosen,
round robin scheduling is used and a slider appears below the scheduling button
allowing am integer quantum to be set. The quantum represents the number of
instructions to be executed before the process loses the CPU. When Random is chosen,
a slider appears below the scheduling button allowing a probability to be set. This
represents the probability that a process will lose the CPU after executing an instruction.
To the right of the Scheduling button is the Print button. The default is Print Atomic
in which the output of fprintf is assumed to be atomic. If Print Not Atomic is chosen, a
probability slider appears which gives the probability of losing the CPU after each
character of the fprintf is output.

Display Information
There are several ways to display information about the state and history of the

simulation. Most of these are controlled by the Display Info button at the top of the 5th
column of buttons. Clicking on this lists some items that can be displayed. Some of

Sistemas Operativos I (I.T.I.S.) Fork-Pipe curso académico 2007-2008

Grupo de Innovación Educativa DMAE-DIA Departamento de Informática Aplicada 4

these items may be disabled if the corresponding information is not available. The list of
display options includes:

 Display Output to show the output generated by the fprintf instructions. Each
process has a color associated with it and the output of each process is shown in
the color of that process. The output can be displayed entirely in black by
pushing the Color button at the bottom of this frame. This changes the button to
a Black button. Pushing it again will change the display back to color. The
processes in the main diagram can also be displayed in color by pushing the pick
Black button that is in the lower right corner of the diagram window.

 Display Process Info shows information about all processes including the
process ID, the original parent process ID (the ID of the process that created it),
the actual parent process ID as reported by getpid() (that may be the ID of the
init process) and the current process state. The state will be one of: Running,
Ready, Waiting for child, Read Blocked, Semaphore Blocked, Zombie, or Done.

 Display History will display a list of all instructions executed. Each instruction
is preceded by the process ID of the process executing the instruction.

 Display Gantt Chart displays a Gantt chart showing the state history of each of
the processes.

 Variables displays the values of the variables for each process.
 Semaphores displays each semaphore and either its value or the list of waiting

processes.
 Frames displays all of the frames created by the Frame button.
 Commentary displays the commentary for the current programs if these is one.

 You can show information about a particular process by clicking on the circle
representing that process in the yellow display window. This pops up two windows, one
showing the history (instructions executed) of that process and one showing the current
values of the variables for that process. In addition, a frame containing information
about a given pipe can be displayed by clicking on the pipe in the diagram. Two Text
Displays appear, the upper one containing the current contents of the pipe and the lower
containing a history of everything that has been read from the pipe.

Sistemas Operativos I (I.T.I.S.) Fork-Pipe curso académico 2007-2008

Grupo de Innovación Educativa DMAE-DIA Departamento de Informática Aplicada 5

Experto C

Program Format
 The simulator allows a fairly general program that creates a collection of
processes and pipes. The original version of the program was intended to simulator a
process ring and has the format given below. The ring format is as follows:

<instructions>
for (i=1;i<nprocs;i++) {
 <instructions>
 if (childpid = fork()) {
 <instructions>
 }
 else {
 <instructions>
 }
 <instructions>
 <optional conditional break instruction>
}
<instructions>
The program assumes the following data:
int i;
int childpid;
int fd[2];
int fd1[2];
char buf[BUFSIZE];

where BUFSIZE is assumed to be large enough to handle anything generated by the
program. In addition, a constant called nprocs is used in the for loop.

Assumptions:

 The buffer, buf is of unlimited size and the instructions guarantee that it will
always contain a string.

 Pipes are of unlimited size and writes to a pipe are atomic.
 Reads from a pipe are atomic and a read will read everything in the pipe.
 A read from a pipe will block only if the pipe is empty and there are processes

that have the pipe open for writing.
 A write to a pipe will always write the full amount requested unless there are no

processes that can read from the pipe. In this case a SIGPIPE signal is simulated
and the process terminates.

 The program does not check return values of system calls and so no error
checking is done. If an error occurs such as a dup2 with improper argument or a
write to a closed or never opened file descriptor, the operation is ignored.

 No operations are performed on standard error except with the fprintf
instructions. A write, close, or dup2 on standard error will produce undetermined
results.

Sistemas Operativos I (I.T.I.S.) Fork-Pipe curso académico 2007-2008

Grupo de Innovación Educativa DMAE-DIA Departamento de Informática Aplicada 6

Changing The Program
 The program can be modified from inside the simulator and saved for later use.
The first button in the third column is the Mode button. It starts with Mode: Execute
which allows for the running of the program. Clicking on this button changes it to
Mode: Program and 6 new buttons appear below it. The first two buttons can be used
to move the pointer up and down. The pointer is shown as an arrow in the program
window in the upper right part of the main display. The next two buttons can be used to
add a new instruction to the program after the pointer or to delete the instruction after
the pointer.
 The Add Instruction pops up a menu listing the possible instructions to add.
The Delete Instruction button is active only when there is a valid instruction after the
pointer. Some instructions cannot be deleted such as the for loop, the if
(childpid=fork()) and the else. The next button allows most instructions to be
modified by conditionals such as if (i==1) or if (i!=1). These are most relevant
after the for loop because at this point only the original parent has i=1. To run the
modified program, click on the Mode button again to return to execute mode.
 The current program can be saved using the yellow Save Program button in the
first column of buttons. This saves the program using the file name given in the button
below. You can change the name of the file to be used by clicking on this Name:
button. By adding a program line to the ringconfig file, these programs can be
accessible to later runs of the simulator.

Recordando
 La instrucción dup2 (oldfile, newfile) hace que newfile sea una copia de oldfile,
cerrándo primero newfile si es necesario. Así por ejemplo, la instrucción dup2 (fd[0], 0)
hace que la entrada estándar provenga del extremo de lectura del pipe.
 En C el valor true es cualquier entero distinto de 0. El valor false es 0.
 En C la instrucción break hace que se aborte el lazo que la contiene.

Sistemas Operativos I (I.T.I.S.) Fork-Pipe curso académico 2007-2008

Grupo de Innovación Educativa DMAE-DIA Departamento de Informática Aplicada 7

Experto D

Local Loggin
The simulator can display information in a log file. Log files are in HTML

format and can be displayed by or printed from a standard browser. The first column of
light blue buttons controls the logging functions of the simulator. Initially, these buttons
are used to control the logging functions before the log file is open or after it is closed.
The first button opens the log. When the log file is successfully opened most of the
buttons change their function to control the log functions appropriate when logging is in
progress.

While the log is closed, the second button toggles between the modes Replace
Old Log and Append to Log. In the former case, opening the log file overwrites any
file with the same name that already exists. In the latter case, the new log is appended to
the old one. The third button can be used to change the name and directory used for
storing the log file. Pushing this button pops up a dialogue box in which the user can
change the directory and log file names. The names of the files for storing the graph
image files created by the simulator can also be changed. The Show Remote Log
button can be used to pop up a browser window containing the log file generated when
the log is stored remotely.

After the log is successfully opened, the Open Log button changes to Close
Log, the second button changes to Log Comment, and the third button changes to Stop
Log. Close Log terminates logging and closes the log file. Stop Log temporarily stops
adding information to the log file but keeps the log file open. When pushed, this button
changes to Start Log which resumes the logging. The Log Comment button pops up a
window which allows the user to enter comments into the log file. The Log Image
button puts a copy of the currently displayed diagram in the log file.

Most of the frames that display history information have there own Log buttons
which becomes active when the log is open and stores the information displayed in the
log file. The program window on the right side of the main simulator window also has a
Log button which can put a copy of the program in the log file. The Gantt charts can
also be logged.

Configuration
Configuration is controlled by default by the file ringconfig. The simulator can

be started with an optional command line parameter giving the name of the
configuration file. The configuration file contains lines which can be used to set values
for various simulator parameters. The following configuration parameters are supported:

 user username sets the name displayed in the log file to username
 size n sets the size of the diagram to at least n by n pixels.
 directory dirname sets the directory for containing the log file to dirname
 nprocs n sets the value of the nprocs program variable to n.
 rundelay n sets the delay between running steps to n milliseconds.
 program filename causes the simulator to read in the program with the given

filename. The name appears in the list under the Change Program menu. There
may be several of these lines in the configuration file.

 infosize n sets the initial number of lines for processes in the Process Info
frame to n.

Sistemas Operativos I (I.T.I.S.) Fork-Pipe curso académico 2007-2008

Grupo de Innovación Educativa DMAE-DIA Departamento de Informática Aplicada 8

 positions n sets the number of positions for processes around the circle to be n.
 small sets the diagram to use small processes and pipes.
 large sets the diagram to use large processes and pipes.
 showFD true turns on the display of all file descriptor arrows.
 showFD false turns off the display of all file descriptor arrows.
 showFD2 true turns on the display of the standard error file descriptor arrow.
 showFD2 false turns off the display of the standard error file descriptor arrow.
 parent-child true turns on the display of the arrow from parent to child.
 parent-child false turns off the display of the arrow from parent to child.
 nopreempt sets the scheduling to non-preemptive.
 quantum n sets the scheduling so that a process loses the CPU after executing n

instructions.
 random p sets the scheduling so that with probability p a process loses the CPU

after executing an instruction.
 FCFS sets the scheduling so that the process chosen from the ready queue is the

one that arrived first.
 inorder sets the scheduling so that the process chosen from the ready queue is

the one with the next larger process ID after the current process.
 outoforder sets the scheduling so that a random process is chosen from the

ready queue.
 fork parent allows the parent to continue executing after a fork.
 fork child causes the child process to execute after a fork.
 fork either causes either the parent or child process to execute with equal

probability after a fork.
 fork random causes a random process from the ready queue to execute after a

fork.
 remoteport n sets the port for remote logging to n. This would not normally be

used.
 prompt pmt sets the default prompt output when the original process
 comfont n sets the default size for the commentary font to n.
 comrows n sets the default number of rows for the commentary frame to n.
 comcolumns n sets the default number of columns for the commentary frame to

n.

