
Sistemas Operativos I (I.T.I.S.) Concurrent IO curso académico 2007-2008 

Grupo de Innovación Educativa DMAE-DIA             Departamento de Informática Aplicada 1 

Experto A 

Basic Operation 
 Start the simulator. Figure 1 shows the simulator with two processes after it has 
been executing for a while.  
 

 
Figure 1: The main simulator window.  

 The screen is divided into sections. The top part of the screen shows a pictorial 
representation of the computer system. The bottom part has a collection of clickable 
buttons and other controls that modify the simulator properties and run the simulation.  
 The top part of the screen is divided into three sections. These sections, from left 
to right are the User Space which shows the processes, the System Space which shows 
the system open file table, the in-memory inodes and the list of processes, and the Disk 
Space which shows the disk blocks. The User Space is divided into two regions, one for 
each process. For each process, the box on the far left shows the ID of the process and 
its parent, as well as the values of variables. To the right of the variables is a box 
showing the program being executed. If the program has not yet completed, a triangular 
arrow indicates the next instruction to be executed (the program counter). The arrow is 
red if the process is in the CPU (process 1002). It is hollow if the process is suspended 
(blocked I/O). On the right side of the User Space of each process is the file descriptor 
table (FDT) for that process. The first three entries corresponding to standard input, 
standard output, and standard error are shown on the first line of the FDT. Since the 
simulator is concerned with file I/O, the contents of these entries are not shown. Each of 
the other open file descriptors points to an entry in the system file table (SFT) in the 
System Space. Each SFT entry shows the file being accessed, the current file offset  and 
the count of the number of open file descriptors using this entry. To the right of the 
open files is the in-memory inodes. Under this is the list of active processes, indicated 
by its ID (process ID). The state of each process is also given, Running, Ready, 
Waiting, or Zombie. Lastly, the Disk Space shows the contents of the files. You can 
easily try the simulator with the included programs. Figure 1 corresponds to Program 1. 



Sistemas Operativos I (I.T.I.S.) Concurrent IO curso académico 2007-2008 

Grupo de Innovación Educativa DMAE-DIA             Departamento de Informática Aplicada 2 

Use the Choose Program button in the lower right corner to pick one of these program 
and either step through it with the Step button or run it with the Run button. When the 
program is running, the Run button changes to Pause and the Reset button changes to 
Abort Run. When paused, the Pause button changes to Resume. To exit the simulator, 
push the pink Quit button that is in the upper left corner of the the frame.  
 The buttons and controls are arranged in 5 columns. The first column controls 
the logging features and the display. The second and third columns control the 
scheduling of processes. The Fourth column controls the rate at which the program runs, 
save or restore the state of the simulator, and allows you to execute an instruction on the 
fly. The last column is for running the program. In the last column, the step button will 
execute the next instruction. The Step Back and Step Forward buttons allow you to 
move through already executed parts of the program. The Run button will run the 
program until it completes or an error occurs. It will run at a rate controlled by the slider 
to the left of the run button. The delay between instructions is in seconds. The Reset 
button will reset and start the program from the beginning. Below this is the Active 
button which shows which process has the CPU. Clicking on this button does a context 
switch. Lastly, the Choose Program button allows you to choose which program to run. 



Sistemas Operativos I (I.T.I.S.) Concurrent IO curso académico 2007-2008 

Grupo de Innovación Educativa DMAE-DIA             Departamento de Informática Aplicada 3 

Experto B 

Simple Programs 
 This section describes the contents of a simple program file. Each program has 
access to a number of variables that are assumed to be correctly declared. No variables 
are initialized, and using the value of an uninitialized variable is considered a fatal error. 
The simulator terminates a run when a fatal error occurs. The available variables are: 
     int totaln; 
     char bufn[LARGE_SIZE]; 
     int childn; 
     int fdn; 
 
 The bufn are assumed to be arrays of arbitrarily large size. The n can be any 
non-negative integer, or can be omitted completely. These allow such variables as 
child0, child5, child123, child or fd7. Each program line has one of the following 
forms: 
     fdn = open("string",O_RDONLY); 
     totaln += read(fdm,bufn+totaln,p); 
     fdn = open("string",wrflags,0777); 
     fdn = open("string",wrflagst,0777); 
     fdn = open("string",wrflagsa,0777); 
     fdn = open("string",wrflagsta,0777); 
     write(fdn,"string",p); 
     close(fdn); 
     fork(); 
     childn = fork(); 
     if (childn) fork(); 
     if (childn) childm = fork(); 
     if (!childn) fork(); 
     if (!childn) childm = fork(); 
     childn = wait(NULL); 
     if (childn) { 
     if (!childn) { 
     else { 
     } 
 
 Here, string represents an arbitrary sequence of printing characters, n and m are 
non-negative integers (0, 1, 2, etc.) and p is a positive integer (1, 2, 3, etc.). The last 4 
instruction types allow different blocks of code to be executed by parent and child 
processes. The open for write instructions use the following write flags that allow 
opening use of the append and truncate flags: 
 int wrflags = O_WRONLY | O_CREAT; 
 int wrflagst = O_WRONLY | O_CREAT | O_TRUNC; 
 int wrflagsa = O_WRONLY | O_CREAT | O_APPEND; 
 int wrflagsta = O_WRONLY | O_CREAT | O_TRUNC | O_APPEND; 
  

The simulator does little checking on the syntax of the program file lines. These 
lines are only checked so as to distinguish one type of instruction from another. For 



Sistemas Operativos I (I.T.I.S.) Concurrent IO curso académico 2007-2008 

Grupo de Innovación Educativa DMAE-DIA             Departamento de Informática Aplicada 4 

example, only three of the above lines contain an open brace, so the following are valid 
lines in a program file: 

{ 
child2 { 
{ !child4 
and these are interpreted as: 
else { 
if (child2) { 
if (!child4) { 



Sistemas Operativos I (I.T.I.S.) Concurrent IO curso académico 2007-2008 

Grupo de Innovación Educativa DMAE-DIA             Departamento de Informática Aplicada 5 

Experto C 

 
Figure 1: The main simulator window.  

Scheduling 
 The simulator allows control over several aspects of the scheduling of the 
processes using the purple buttons in the second and third columns. The scheduling 
parameters determine when context switched take place and which process is chosen 
when there is a context switch.  
 In addition, the top button in the second column determines what is duplicated 
when a fork occurs. The POSIX thread library specifies that a fork only duplicates the 
currently running thread, not all of the thread of the process. This is the default for the 
simulator. 
The second button in the second column determines how the next process is chosen 
when a context switch takes place. The possibilities are:  

 FCFS: the next process in the ready queue is chosen.  
 Next: the ready process with the next highest ID is chosen.  
 Random: a random ready process is chosen.  

The third button in the second column controls when context switches take place. The 
possibilities are:  

 Nonpreemtive: No context switch for after most instructions.  
 RR: round robin scheduling. Under the scheduling button will be a slider to 

control the quantum. The quantum indicates how many instructions can be 
executed before a process is removed from the CPU.  

 Random: Under the scheduling button will be a slider to control the probability 
that the CPU is lost after an instruction is executed.  

The first button of the third column controls what process executes after a fork 
instruction. The possibilities are:  

 parent: the parent always continues execution unless a context switch is forced 
by random or round robin scheduling.  

 child: the child process always executes next after a fork.  



Sistemas Operativos I (I.T.I.S.) Concurrent IO curso académico 2007-2008 

Grupo de Innovación Educativa DMAE-DIA             Departamento de Informática Aplicada 6 

 either: Either the parent or child will execute next, chosen at random with equal 
probabilities.  

 Random: A random ready process is chosen.  
 

The third button of the third column indicates whether I/O is atomic. If I/O is 
atomic, then a process never loses the CPU during a read or write operation. If I/O is not 
atomic, under this button will be a slider giving the probability that the instruction loses 
the CPU after each I/O byte is processed. When stepping through a program using non-
atomic I/O, each step processes one byte. When a non-atomic I/O instruction is 
executing, the triangular program counter arrow is preceded by an integer giving the 
number of bytes processed so far. For a read operation, the total number of bytes to read 
is given in the instruction, but is reduced if there are fewer bytes in the file. For a write 
operation, it is considered a fatal error to write more bytes than in the string in the 
second parameter of the write instruction.  



Sistemas Operativos I (I.T.I.S.) Concurrent IO curso académico 2007-2008 

Grupo de Innovación Educativa DMAE-DIA             Departamento de Informática Aplicada 7 

Experto D 

 
Figure 1: The main simulator window.  

Local logging 
 The simulator can display information in a log file. Log files are in HTML 
format and can be displayed by or printed from a standard browser. The first column of 
light blue buttons controls the logging functions of the simulator. Initially, these buttons 
are used to control the logging functions before the log file is open or after it is closed. 
 The first button opens the log. When the log file is successfully opened most of 
the buttons change their function to control the log functions appropriate when logging 
is in progress. The second button can be used to change the name and directory used for 
storing the log file. Pushing this button pops up a dialogue box in which the user can 
change the directory and log file names. The names of the files for storing the graph 
image files created by the simulator can also be changed. While the log is closed, the 
third button toggles between the modes Replace Old Log and Append to Log. In the 
former case, opening the log file overwrites any file with the same name that already 
exists. In the latter case, the new log is appended to the old one.  
 After the log is successfully opened, the Open Log button changes to Close Log, 
the second button changes to Stop Log  and the third button changes to Log Comment. 
Close Log terminates logging and closes the log file. Stop Log temporarily stops adding 
information to the log file but keeps the log file open. When pushed, this button changes 
to Start Log which resumes the logging. The Log Comment button pops up a window 
which allows the user to enter comments into the log file. The Log Image button puts a 
copy of the currently displayed diagram in the log file.  

Advanced Configuration 
 The default configuration file is called ioconfig. The table below lists some 
configuration options.  
 



Sistemas Operativos I (I.T.I.S.) Concurrent IO curso académico 2007-2008 

Grupo de Innovación Educativa DMAE-DIA             Departamento de Informática Aplicada 8 

Keyword Values Meaning 
user anything The name of the current user. This appears in the log file. 
quiet none Turns off all sounds generated by the simulator. 

 
 
 
 


