
En el circuito de la figura calcular

- a) Intensidades I_1 , I_2 , I_3
- b) Diferencias de potencial V_{AD} y V_{CB}
- c) Potencia suministrada y potencia consumida, indicando el valor de la potencia eléctrica, potencia mecánica y potencia calorífica

Resolución

Aplicamos la ley de Kirchooff de nudos al punto A, en el que flega I₁ y salen I₂ e I₃, de donde

$$I_1 = I_2 + I_3$$

Aplicando la ley de Kirchhoff a la malla a ADCA $5I_1 + 8I_3 = 31$

Y a la malla ABDA se obtiene $5I_2 - 8I_3$.

Resolviendo el sistema se obtiene que la intensidad que llega al nudo A es $I_1=3A$, y salen las corrientes de intensidad $I_2=1A$ e $I_3=2A$.

- b) La diferencia de potencial entre A y D es V_{AD} = $8I_3$ =16V y la diferencia de potencial entre los puntos C y B es V_{CB} = $4I_1$ + I_2 +11=35V
- c) La energia eléctrica la suministra el generador de fuerza electromotriz 11V, siendo la potencia suministrada $P_{sum}=\varepsilon_1I_1=31V\cdot 3A=93W$; esta a su vez se transforma en energía mecanica y energía calorífica. En el motor de fuerza contraelectromotriz 11V, se transforma la energía eléctrica en mecánica, y la potencia mecánica es $P_{mec}=\varepsilon_2I_2=11V\cdot 1A=11W$; en las resistencias, se transforma la energía eléctrica en calor por efecto Joule, siendo la potencia eléctrica $P_{Joule}=5I_1^2+5I_2^2+8I_3^2=45+5+32=82W$. Puede comprobarse que la suma de las potencias mecánica y eléctrica o Joule es igual a la potencia suministrada por el generador.