Una masa puntual de 1 kg está sometida a una fuerza dependiente de la posición de la forma \vec{F} ? ? \vec{xi} ? 2 \vec{yj} ? \vec{k} (N). Debido a la acción de esta fuerza, la partícula está sometida a una aceleración, y su velocidad va cambiando con la posición, siendo la velocidad en el punto A(0,1,2) de 4 m/s.

- a) Escribir la ecuación diferencial de las líneas de fuerza e integrarla.
- b) ¿Existe energía potencial? En caso afirmativo calcularla.
- c) Sabiendo que la energía mecánica en A(0,1,2) es 12 J, calcular la velocidad de la partícula en el punto B(0,3,0).
- d) Calcular el trabajo realizado para trasladar la partícula desde el punto A hasta el punto B, por integración y sin integración.

Resolución

a) La ecuación diferencial de las líneas de fuerza es $\frac{dx}{?x}$? $\frac{dy}{2y}$? $\frac{dz}{?1}$; su integración proporciona la ecuación de las líneas de fuerza como intersección de dos superficies

?
$$Lnx$$
 ? $\frac{1}{2}Lny$? LnC_1 ? $xy^{1/2}$? C_1 ? Lnx ? ? Z ? C_2 ? Z ? Z

b) La fuerza que actúa sobre la partícula es conservativa, ya que su rotacional es nulo, por lo que se puede expresar como el gradiente de energía potencial, cambiada de signo,

$$? xi ? 2yj ? k ? ? \frac{?U}{?x} ? \frac{?U}{?y} j ? \frac{?U}{?z} k$$

Además dU? $\frac{?U}{?x}dx$? $\frac{?U}{?y}dy$? $\frac{?U}{?z}dz$; sustituyendo los valores de las derivadas parciales por las correspondientes componentes de la fuerza (cambiadas de signo), se obtiene

$$dU$$
 ? xdx ? $2ydy$? dz , $cuya$ integración proporciona U ? $\frac{x^2}{2}$? y^2 ? z ? C

c) Sabiendo que la energía mecánica en A(0,1,2) es 12 J, podemos calcular la constante de integración de la energía potencial, pues en A sabemos que la velocidad es 4m/s; por tanto

 $\frac{1}{2}(lkg)(4m/s)^2$? $\frac{1}{2}$

d) El trabajo elemental durante un desplazamiento elemental es dW? $\overrightarrow{F} \cdot d\overrightarrow{r}$? ? xdx? 2ydy? dz; al pasar de A a B, las coordenadas pasan de (0,1,2) a (0,3,0)

$$W ? \stackrel{0}{\overset{0}{?}?} xdx? 2 \stackrel{3}{\overset{0}{?}} ydy? \stackrel{2}{\overset{0}{?}} dz? y^{2} \stackrel{0}{\overset{1}{?}}? z^{0}_{2}? 9? 1? (?0? 2)? 10J$$

Se puede calcular sin integrar, mediante la diferencia entre la energía potencial y final U_A ? U_B ? 0? 1^2 ? 2? 3?? (0? 3^2 ? 0? 3)? 4? (?6)? 10J