Una partícula de masa m = 3 kg se encuentra en un campo de fuerzas conservativo, siendo su potencial V

$$V(x) = 2x^2$$
 J/kg para $-1 \le x \le 1$

$$V(x) = 2 \quad J/kg \quad \text{para } \begin{cases} x < -1 \\ x > 1 \end{cases}$$

donde x viene expresado en metros.

a) Calcular la fuerza $\vec{F}(x)$ que actúa sobre la partícula

Para el intervalo $-1 \le x \le 1 - 1 \le x \le 1$

- b) Escribir la ecuación diferencial del movimiento de la partícula indicando el tipo de movimiento que tiene
- c) Calcular y representar frente al desplazamiento x:

La energía potencial U(x)

La energía mecánica E (x)

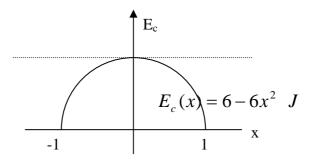
La energía cinética $E_c(x)$

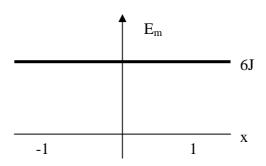
Resolución

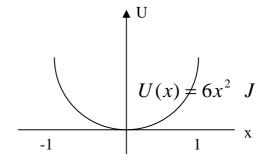
Dado el potencial V(x), la energía potencial U(x) es U(x) = mV(x), por tanto

$$U(x) = 6x^2 \quad J \quad \text{para } -1 \le x \le 1$$

$$U(x) = 6 \quad J \quad \text{para } \begin{cases} x < -1 \\ x > 1 \end{cases}$$


a) La fuerza es igual al gradiente de energía potencial, cambiada de signo, debido a que está dirigida hacia energías potenciales decrecientes, por tanto


$$\vec{F} = -\frac{dU}{dx}\vec{i} = -12x\vec{i}$$
 N en el intervalo $-1 \le x \le 1$ y $\vec{F} = \vec{0}$ en $\begin{cases} x < -1 \\ x > 1 \end{cases}$


b) En el intervalo $-1 \le x \le 1$ la fuerza es $\vec{F} = -12x\vec{i}$ N, de donde mx'' = -12x o bien 3x'' + 12x = 0 que es la ecuación diferencial solicitada; corresponde a un movimiento armónico simple rectilíneo siendo la frecuencia propia $\omega = 2 \ rad \ / \ s$; se trata de un movimiento periódico cuyo periodo es $T = \frac{2\pi}{2} = \pi \ s$

c) La energía potencial es $U(x)=6x^2\,\,J$, por lo que en los extremos del intervalo la función adquiere el máximo valor de la energía potencial $U(1)=U(-1)=6\,\,J\,$ y el mínimo valor de

la energía cinética $E_c(1)=E_c(-1)=0$. La energía mecánica, suma de las energías cinética y potencial se mantiene constante en todos los puntos del intevalo, de donde $E_m(x)=6J$. En cualquier punto del intervalo la energía cinética es $E_c(x)=6-6x^2$ J. La representación gráfica de estas funciones frente a la posición x es

