Formas bilineales y formas cuadráticas

Ultano Kindelán

Titulaciones de grado. ETSIME(UPM)

Álgebra Lineal

ÍNDICE

- Introducción
- Formas bilineales
- Formas cuadráticas
- Diagonalización de una forma cuadrática real
- Olasificación de las formas cuadráticas reales.

7.1 Introducción

- En este capítulo se va generalizar el concepto de producto escalar introduciendo las formas bilineales que, a su vez, van a permitir definir las formas cuadráticas.
- Las formas cuadráticas no son funciones lineales pero se les puede asociar una matriz a partir de su forma polar (forma bilineal asociada).
- También se estudiará la diagonalización por congruencia de una forma cuadrática que permite expresarlas de la forma más sencilla posible y clasificarla.
- El estudio de las formas cuadráticas tiene aplicaciones en diversas áreas de las matemáticas, por ejemplo en geometría (estudio de cónicas y cuádricas), en análisis (problemas de optimización) y en cálculo numérico (estudio de la convergencia de los métodos iterativos para resolver sistemas lineales).

7.2 formas bilineales

Definición 7.1

Dado un K-espacio vectorial V se dice que una aplicación f de $V \times V$ en K es una **forma bilineal**, si $\forall \mathbf{u_1}, \mathbf{u_2}, \mathbf{v_1}, \mathbf{v_2} \in V$ y $\forall \lambda_1, \lambda_2, \mu_1 \mu_2 \in K$

$$f(\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2, \mathbf{v}) = \lambda_1 f(\mathbf{u}_1, \mathbf{v}) + \lambda_2 f(\mathbf{u}_2, \mathbf{v})$$

$$f(\mathbf{u}, \mu_1 \mathbf{v}_1 + \mu_2 \mathbf{v}_2) = \mu_1 f(\mathbf{u}, \mathbf{v}_1) + \mu_2 f(\mathbf{u}, \mathbf{v}_2).$$

Observación 7.1

- Se dice que f es una forma, en lugar de usar el término "aplicación" para indicar que las imágenes $f(\mathbf{x}, \mathbf{y})$ son escalares.
- Si f es bilineal, entonces $f(\mathbf{x}, \mathbf{0}) = f(\mathbf{0}, \mathbf{x}) = 0$.
- f(-x, y) = f(x, -y) = -f(x, y).
- Al conjunto de las formas bilineales definidas sobre V se le denota por $\mathcal{B}(V)$ y es un espacio vectorial sobre K con las operaciones usuales.

Definición 7.2

Una forma bilineal $f: V \times V \to K$ se dice que es **simétrica** si $\forall \mathbf{x}, \mathbf{y} \in V$

$$f(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x}).$$

Ejemplo 7.1

La función $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ que a cada par de vectores $\mathbf{x} = (x_1, x_2)$ e $\mathbf{y} = (y_1, y_2)$ le hace corresponder el número real

$$f(\mathbf{x}, \mathbf{y}) = 2x_1y_1 + ax_1y_2 + bx_2y_1 + 4x_2y_2$$
, $a, b \in \mathbf{R}$ conocidos.

es una forma bilineal que se puede expresar matricialmente:

$$f(\mathbf{x},\mathbf{y}) = (x_1x_2)\begin{pmatrix} 2 & a \\ b & 4 \end{pmatrix}\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

f sera **simétrica** cuando a = b.

Definición 7.3

Sea V un espacio vectorial sobre K de dimensión finita n, $B = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ una base de V y $f : V \times V \to K$ una forma bilineal. f se puede expresar como

$$f(\mathbf{x},\mathbf{y}) = \sum_{i,j=1}^{n} a_{ij} x_i y_j = (x_1 \cdots x_n) \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \mathbf{x}^t A \mathbf{y},$$

con $a_{ij} = f(\mathbf{e}_i, \mathbf{e}_j)$. La matriz A recibe el nombre de **matriz de** f en la base B.

Observación 7.2

La forma bilineal f es **simétrica** si, y solo si, A es **simétrica**.

Proposición 7.1 (Cambio de base)

Si V es un espacio vectorial sobre K de dimensión finita n, $B = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ y $B' = \{\mathbf{e}_1', \dots, \mathbf{e}_n'\}$ son dos bases de V y $f: V \times V \to K$ es una forma bilineal, entonces si A y A' son matrices asociadas a f en las bases B y B' y si

$$P=(\mathbf{e}_1',\ldots,\mathbf{e}_n')$$

es la matriz de cambio de base de B' a B, se verifica

$$A' = P^t A P$$
.

Se dice que A y A' son matrices congruentes.

7.3 formas cuadráticas

Definición 7.4

Sea V un K-espacio vectorial. Se llama **forma cuadrática**, asociada a la forma bilineal simétrica f, a la aplicación (definida $\forall \mathbf{x} \in V$)

$$q: V \rightarrow K$$

 $\mathbf{x} \rightarrow q(\mathbf{x}) = f(\mathbf{x}, \mathbf{x}).$

Se dice que f es la forma polar de q.

Observación 7.3

 $\forall \mathbf{x} \in V \text{ y } \forall \alpha \in K \text{ se verifica}$

$$q(\alpha \mathbf{x}) = \alpha^2 q(\mathbf{x}).$$

A partir de una forma cuadrática se puede obtener su forma polar:

$$2f(\mathbf{x}, \mathbf{y}) = q(\mathbf{x} + \mathbf{y}) - q(\mathbf{x}) - q(\mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in V.$$

Definición 7.5

Sea V un espacio vectorial sobre K de dimensión finita n, $B = \{e_1, \dots, e_n\}$ una base de V, $q: V \to K$ una forma cuadrática. q se puede expresar como

$$q(\mathbf{x}) = \sum_{i,j=1}^{n} a_{ij} x_i x_j = (x_1 \cdots x_n) \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \mathbf{x}^t A \mathbf{x},$$

con $a_{ij} = f(\mathbf{e}_i, \mathbf{e}_j)$, en donde f es la forma polar de q. La matriz A, que será simétrica, y coincide con la matriz de f en la base B, recibe también el nombre de **matriz de** g en la base g.

Ejemplo 7.2

La función $q(\mathbf{x}) = 2(x_1)^2 + (x_2)^2 + 5(x_3)^2 + x_1x_2 + 8x_1x_3 + 3x_2x_3$ es una forma cuadrática definida sobre \mathbf{R}^3 que matricialmente se puede expresar como

$$q(\mathbf{x}) = (x_1 x_2 x_3) \begin{pmatrix} 2 & 1/2 & 4 \\ 1/2 & 1 & 3/2 \\ 4 & 3/2 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Proposición 7.2 (Cambio de base)

Bajo las mismas hipótesis que en la proposición 7.1, si A es la matriz de una forma cuadrática, q,en la base B y si $P = (\mathbf{e}'_1, \dots, \mathbf{e}'_n)$ es la matriz de cambio de base de B' a B, se verifica

$$A'=P^tAP$$
,

en donde A' es la matriz de q en la base B'.

Definición 7.6

Si $q:V \to K$ es una forma cuadrática, las matrices asociadas a q tienen todas el mismo rango \to **rango de** q.

- $\operatorname{rg} q = \dim V \to q$ es ordinaria.
- $\operatorname{rg} q < \dim V \to q$ es degenerada.

Definición 7.7

- Sea q: V → K una forma cuadrática y f su forma polar. Dos vectores x, y ∈ V son conjugados respecto de la forma cuadrática q si se verifica f(x, y) = 0.
- Si $\mathbf{x} \in V$ verifica $q(\mathbf{x}) = f(\mathbf{x}, \mathbf{x}) = 0$, se dice que es un vector autoconjugado respecto de q.
- Dado un vector z, el conjunto de todos los vectores conjugados de z (respecto de q), ⟨z⟩[⊥] = {y ∈ V/f(z,y) = 0}, es un subespacio vectorial de V que recibe el nombre de subespacio conjugado de z respecto de q.

- Se verifica que si $\mathbf{z} \in V$ es tal que $q(\mathbf{z}) \neq 0$, entonces $\langle \mathbf{z} \rangle^{\perp}$ es suplementario de $\langle \mathbf{z} \rangle$.
- El subespacio ⟨z⟩[⊥] tiene por ecuación matricial z^tAx = 0, en donde A es la matriz de q en cierta base de V y x es un vector cualquiera de V expresado en la misma base que A (al igual que z).
- Dos subespacios U_1 y U_2 son conjugados (respecto de q) si cualquier vector de uno de ellos es conjugado de todos los vectores del otro ($U_2 \perp U_1$ si $f(\mathbf{u}, \mathbf{v}) = 0 \ \forall \mathbf{u} \in U_1, \forall \mathbf{v} \in U_2$).
- $U^{\perp} = \{ \mathbf{x} \in V/f(\mathbf{x}, \mathbf{v}) = 0 \ \forall \mathbf{v} \in U \}$ recibe el nombre de subespacio conjugado de U respecto de q. U y U^{\perp} no son necesariamente suplementarios.

Definición 7.8

Sea $q:V\to K$ una forma cuadrática y f su forma polar. Se llama **núcleo** de q al conjunto

$$\ker q = \{\mathbf{x} \in V/f(\mathbf{x}, \mathbf{y}) = 0, \forall \mathbf{y} \in V\}$$

Observación 7.6

- ker q es un subespacio de V.
- Si A es la matriz de q en una cierta base de V, entonces las ecuaciones implícitas de ker q en la base en cuestión son

$$A\mathbf{x}=\mathbf{0}$$
.

- $\ker q = \{\mathbf{0}\}$ si y, solo si, q es ordinaria.
- $x \in \ker q \Rightarrow q(\mathbf{x}) = 0$ (el recíproco no es cierto).

7.4 Diagonalización de una forma cuadrática real

En lo que sigue se considerará K = R.

Proposición 7.3

Sea V un espacio vectorial de dimensión n. Para cualquier forma cuadrática $q:V\to I\!\!R$ existe alguna base B de V en la que la matriz D asociada a q es diagonal. En la base B la expresión de q será

$$q(\mathbf{x}) = d_1(x_1)^2 + \ldots + d_n(x_n)^2.$$

Diagonalizar q es hallar B y D.

- Los vectores de la base $B = \{\mathbf{e}_i\}$ son conjugados respecto de q.
- $d_i = q(\mathbf{e}_i) = f(\mathbf{e}_i, \mathbf{e}_i)$, donde f es la forma polar de q.
- La diagonalización no es única.
- Si al ordenar los vectores de la base se ponen al final aquellos que verifican $q(\mathbf{e}_i) = d_i = 0$, se tiene

$$\left. \begin{array}{l} q(\mathbf{x}) = d_1(x_1)^2 + \ldots + d_r(x_r)^2 \\ (d_1 \neq 0, \ldots, d_r \neq 0) \end{array} \right\} \Rightarrow \operatorname{rg} q = r.$$

Proposición 7.4

Para cualquier matriz simétrica A de dimensión n formada por escalares de R, existe alguna matriz regular P, de dimensión n, tal que $D = P^t A P$ es una matriz diagonal. Hallar D y P es **diagonalizar** A por **congruencia**.

Existen distintos métodos para diagonalizar una forma cuadrática real. En este curso se van a explicar únicamente tres: la diagonalización ortogonal, la diagonalización constuyendo una base de vectores conjugados y la diagonalización mediante operaciones elementales. El primero de los tres métodos es, esencialmente, el que ya se explicó en la diagonalización de endomorfismos pero en este caso aplicado a formas cuadráticas. El problema de este método es que necesita calcular los valores propios de la matriz asociada a q y los valores propios se calculan hallando las raíces de un polinomio de grado n, raíces que pueden ser complicadas de calcular para $n \ge 3$ sin utilizar métodos numéricos (para dimensiones mayores o iguales que cinco no existe una fórmula general para obtenerlas). El segundo y tercer métodos no involucran la resolución de ecuaciones polinómicas.

Diagonalización ortogonal

Proposición 7.5

Sea $q:V\to R$ una forma cuadrática definida sobre un espacio euclídeo V de dimensión n y A la matriz (simétrica y real) de q en una base ortonormal de V. **Existe entonces algún cambio de base ortogonal en** V con el que la expresión de q pasa a ser:

$$q(\mathbf{x}) = \lambda_1(x_1')^2 + \ldots + \lambda_n(x_n')^2,$$

en donde λ_i **son los valores propios de** A (repitiendo cada uno tantas veces como indique su multiplicidad algebraica) y x_i' son las nuevas coordenadas de **x**.

- El anterior cambio de base ortogonal será de la forma x = Px', en donde x y x' son las coordenadas antiguas y nuevas respectivamente y P es una matriz de cambio de base ortogonal. Las columnas de P son vectores propios de la matriz A que constituyen una base ortonormal de V y que se han obtenido uniendo bases ortonormales de los subespacios propios de A.
- Se parte, por tanto de q(x) = x^tAx en la base dada y se llega a q(x) = x'^tDx' en la nueva base, siendo D la matriz diagonal cuya diagonal está formado por los valores propios de A.
- Se verifica $D = P^tAP = P^{-1}AP$ puesto que $P^t = P^{-1}$. Por lo tanto D es el resultado de diagonalizar ortogonalmente la matriz (por **congruencia** o por **semejanza** que, siendo P ortogonal, es lo mismo).

Diagonalización construyendo una base de vectores conjugados

Sea $q:V\to R$ una forma cuadrática definida sobre un espacio euclídeo V de dimensión n y A la matriz (simétrica y real) de q en una base cualquiera de V ($\{\mathbf{e}_i\}$). Un procedimiento para hallar una base de vectores conjugados respecto de q es el siguiente (todas la coordenadas referidas a la base $\{\mathbf{e}_i\}$:

• Se escoge un vector cualquiera de V, \mathbf{c}^1 , tal que $q(\mathbf{c}^1) \neq 0$ (habitualmente $\mathbf{c}^1 = (1, 0, \cdots, 0)^t$ si cumple la condición anterior) y se determina su subespacio conjugado respecto de q:

$$\left\langle \mathbf{c}^{1}\right
angle _{q}^{\perp}=\left\{ (c_{1}^{1}\cdots c_{n}^{1})A\left(egin{array}{c} x_{1} \ dots \ x_{n} \end{array}
ight)=0
ight\}
ightarrow\mathbf{c}^{2}.$$

 \mathbf{c}^2 es un vector cualquiera de $\langle \mathbf{c}^1 \rangle_q^{\perp}$ tal que $q(\mathbf{c}^2) \neq 0$.

• Se determina el subespacio conjugado de \mathbf{c}^1 y \mathbf{c}^2 respecto de q y se escoge un vector cualquiera de $\langle \mathbf{c}^1, \mathbf{c}^2 \rangle_q^{\perp}$, \mathbf{c}^3 , t. q. $q(\mathbf{c}^3) \neq 0$:

$$\left\langle \mathbf{c}^{1}, \mathbf{c}^{2} \right\rangle_{q}^{\perp} = \left\{ \left(\begin{array}{c} c_{1}^{1} \cdots c_{n}^{1} \\ c_{1}^{2} \cdots c_{n}^{2} \end{array} \right) A \left(\begin{array}{c} x_{1} \\ \vdots \\ x_{n} \end{array} \right) = 0 \right\} \rightarrow \mathbf{c}^{3}.$$

• Finalmente se determina $\langle \mathbf{c}^1, \mathbf{c}^2, \cdots, \mathbf{c}^{n-1} \rangle_q^{\perp}$, siendo \mathbf{c}^n un vector cualquiera de este subespacio:

$$\left\langle \mathbf{c}^1, \mathbf{c}^2, \cdots, \mathbf{c}^{n-1} \right\rangle_q^{\perp} = \left\{ \left(\begin{array}{c} c_1^1 \cdots c_n^1 \\ c_1^2 \cdots c_n^2 \\ \vdots \\ c_1^{n-1} \cdots c_n^{n-1} \end{array} \right) A \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) = 0 \right\} \rightarrow \mathbf{c}^n.$$

Si en la etapa k de la diagonalización no es posible encontrar vectores de $\langle \mathbf{c}^1, \mathbf{c}^2, \cdots, \mathbf{c}^{k-1} \rangle_q^{\perp}$ tales que $q(\mathbf{c}^k) \neq 0$, la forma cuadrática q será degenerada de rango k-1 y la diagonalización habrá concluido^a La nueva base será

$$\left\{\mathbf{c}^{1}, \mathbf{c}^{2}, \cdots, \mathbf{c}^{k-1}\right\} \cup \text{ Base de } \left\langle\mathbf{c}^{1}, \mathbf{c}^{2}, \cdots, \mathbf{c}^{k-1}\right\rangle_{q}^{\perp}.$$

La expresión de q en esta nueva base será:

$$q(\mathbf{x}) = q(\mathbf{c}^1)(x_1)^2 + \ldots + q(\mathbf{c}^{k-1})(x_{k-1})^2 + 0(x_k)^2 + \ldots + 0(x_n)^2.$$

^aTodos los vectores de $W = \langle \mathbf{c}^1, \mathbf{c}^2, \cdots, \mathbf{c}^{k-1} \rangle_q^{\perp}$ son isótropos, esto implica $(2f(\mathbf{x}, \mathbf{y}) = q(\mathbf{x} + \mathbf{y}) - q(\mathbf{x}) - q(\mathbf{y})) = \text{que } W \text{ es un subespacio isótropo } (f(\mathbf{x}, \mathbf{y}) = 0 \ \forall \mathbf{x}, \mathbf{y} \in W)$ y por lo tanto $W = \ker q \to \text{cualquier base de } W \text{ servirá para obtener una base de vectores conjugados de } q \text{ uniéndola con } \{\mathbf{c}^1, \mathbf{c}^2, \cdots, \mathbf{c}^{k-1}\}.$

Diagonalización mediante operaciones elementales

El método consiste en hacer operaciones elementales sobre la matriz asociada a la forma cuadrática *A* en una base cualquiera:

- Se utilizan como pivotes los elementos 11, 22, ..., que se van obteniendo sucesivamente al hacer las mismas operaciones elementales en las filas de la matriz y en las columnas (después de cada operación que se haga en las filas se repetirá la misma operación sobre las columnas).
- Tras cada doble paso la matriz obtenida será simétrica y congruente con la inicial y, al final, se obtendrá la matriz diagonal D = P^tAP.
- Si durante el proceso se aplican las mismas operaciones, pero solo en las filas, a la matriz identidad se obtendrá la matriz traspuesta de la matriz de cambio de base P^t.

Si al aplicar el método anterior un elemento del lugar ii es nulo, se le suma a la fila i y a la columna i (primero a la fila y luego a la columna) una fila j y columna j posteriores (j>i). Si todos los elementos $a_{k,l}, k\geq i, l\geq i$ son nulos el proceso de diagonalización habrá terminado y la forma cuadrática será degenerada.

Justificación del método

Si E es una **matriz elemental**, la matriz EA realiza la correspondiente operación elemental **sobre las filas** de A y tomando la traspuesta de A, EA^t realiza la operación **sobre las columnas** de A. Entonces: la matriz $E(EA)^t$ realiza la operación sobre las columnas de la matriz en la que ya hemos realizado la operación de las filas; pero como $E(EA)^t$ = EA^tE^t = EAE^t (por ser A simétrica), esta matriz es **simétrica y congruente** con A (pues E es inversible). Repitiendo el proceso hasta obtener una matriz diagonal:

$$D = E_k E_{k-1} \cdots E_1 A E_1^t \cdots E_{k-1}^t E_k^t =$$

$$(E_k E_{k-1} \cdots E_1) A (E_k E_{k-1} \cdots E_1)^t = P^t A (P^t)^t = P^t A P$$

que será congruente con A pues P es inversible al ser producto de inversibles.

7.5 Clasificación de las formas cuadráticas reales

Proposición 7.6 (Ley de inercia de Sylvester)

Sea V un R— espacio vectorial de dimensión finita, $q:V\to R$ una forma cuadrática y A un matriz real simétrica. Se verifica que:

- Todas las matrices diagonales asociadas a q (en distintas bases) tienen el mismo número de elementos positivos, p, y el mismo número de elementos negativos q.
- Todas las matrices diagonales son congruentes con A tienen el mismo número de elementos positivos, p', y el mismo número de elementos negativos q'.

Se llaman **signatura** de q y **signatura** de A a sig q = (p, q) y sig A = (p', q').

Clasificación

Sea $q:V\to I\!\!R$ una forma cuadrática real definida sobre un espacio euclídeo de dimensión n cuya expresión, después de diagonalizarla es

$$q(\mathbf{x}) = d_1(x_1)^2 + \ldots + d_n(x_n)^2,$$

q se clasifica de la siguiente forma (r = rango de q):

- q es definida
 - positiva si $q(\mathbf{x}) > 0 \ \forall \mathbf{x} \neq 0 \ (d_i > 0 \ \forall i, \ \text{sig } q = (n, 0)).$
 - **negativa** si $q(\mathbf{x}) < 0 \ \forall \mathbf{x} \neq 0 \ (d_i < 0 \ \forall i, \ \text{sig} \ q = (0, n)).$
- q es semidefinida
 - positiva si $q(\mathbf{x}) \geq 0 \ \forall \mathbf{x} \neq 0 \ (d_i \geq 0 \ \forall i, \ \text{sig } q = (r, 0)).$
 - negativa si $q(\mathbf{x}) \le 0 \ \forall \mathbf{x} \ne 0 \ (d_i \le 0 \ \forall i, \ \text{sig } q = (0, r)).$
- indefinida
 - si: $\exists \mathbf{x}/q(\mathbf{x}) > 0$ y $\exists \mathbf{y}/q(\mathbf{y}) < 0$ $(\exists h/d_h > 0$ y $\exists k/d_k < 0$, sig q = (p,q) $(p \neq 0$ y $q \neq 0)$).

Una matriz simétrica real A de dimensión n y rango r se clasifica de la misma forma que q, sustituyendo $q(\mathbf{x})$ por $\mathbf{x}^t A \mathbf{x}$ y $\operatorname{sig} q$ por $\operatorname{sig} A$.

Observación 7.13

Al diagonalizar q ortogonalmente se verifica $d_i = \lambda_i$ (valores propios de A). Por lo tanto los valores propios de una matriz sirven para clasificarla (a ella y a su correspondiente forma cuadrática).

Si A es la matriz asociada, **no necesariamente diagonal**, a una forma cuadrática q, **definida positiva**, en una cierta base $B = \{\mathbf{e}_i\}$, entonces, los elementos de su **diagonal** tienen que ser **estrictamente positivos** $(a_{ii} > 0, i = 1, \ldots, n)$ puesto que $a_{ii} = q(\mathbf{e}_i) > 0$. **La proposición recíproca no es cierta**: el que se verifique $a_{ii} > 0$, $i = 1, \ldots, n$ no implica que q sea definida positiva. Por ejemplo $q : \mathbb{R}^2 \to \mathbb{R}$ tal que $q(\mathbf{x}) = (x_1)^2 + (x_2)^2 + 4x_1x_2$ verifica que $a_{11} > 0$ y $a_{22} > 0$, sin embargo $q((1, -1)^t) = -2$ por lo que no es definida positiva. Lo anterior también es válido para las f. cuad. definidas negativas cambiando el sentido de las desigualdades.

Expresión canónica de una forma cuadrática

Sea $q:V\to R$ una forma cuadrática definida sobre el R— espacio vectorial V de dimensión n. Si sig q=(p,q) (rg q=r=p+q), existe alguna base de V en la que la expresión de q es

$$q(\mathbf{x}) = (x_1)^2 + \ldots + (x_p)^2 - ((x_{p+1})^2 + \ldots + (x_r)^2).$$

Observación 7.15

Si A es una matriz simétrica real de signatura (p, q) (rg q = r = p + q), entonces es congruente con la matriz diagonal

$$C = (c_{ij}), \text{ con } c_{ij} = \left\{ egin{array}{ll} 0 & ext{si} & i
eq j \ 1 & ext{si} & i = j = 1, \dots, p \ -1 & ext{si} & i = j = p + 1, \dots, r \ 0 & ext{si} & i = j = r + 1, \dots, n \end{array}
ight. .$$

C es la matriz canónica de congruencia de A.

Supuesta una forma cuadrática q de sig = (p, q) (r = p + q) definida sobre un R— espacio vectorial de dimensión n, para pasar de la expresión

$$q(\mathbf{x}) = d_1(x_1)^2 + \ldots + d_p(x_p)^2 + d_{p+1}(x_{p+1})^2 + \ldots + d_r(x_r)^2,$$

$$(d_i > 0 \text{ si } i = 1, \ldots, p \quad d_i < 0 \text{ si } i = p+1, \ldots, r)$$

a la expresión

$$q(\mathbf{x}) = (x'_1)^2 + \ldots + (x'_p)^2 - ((x'_{p+1})^2 + \ldots + (x'_r)^2)$$

Hay que realizar el cambio de base

$$\mathbf{x} = P\mathbf{x}'$$

Observación 7.16 (cont.)

En donde

$$P = \left(p_{ij}\right), \text{ con } p_{ij} = \left\{ egin{array}{ll} 0 & ext{si} & i
eq j \ rac{1}{\sqrt{|d_i|}} & ext{si} & i = j = 1, \dots, r \ 1 & ext{si} & i = j = r+1, \dots, n \end{array}
ight..$$

es la matriz de cambio de base que es diagonal.

Ejercicios

1 Sea $g: V \times V \rightarrow \mathbf{R}$ una forma bilineal (no simétrica) definida mediante

$$g(\mathbf{x},\mathbf{y}) = 3x_1y_1 + 7x_1y_2 - x_2y_1 + 4x_1y_3 - 5x_2y_3 + 3x_3y_2$$

En una cierta base B de V. Considérese la aplicación $q:V\to R$ definida por $q(\mathbf{x})=g(\mathbf{x},\mathbf{x})$. Expresar matricialmente g y q en la base B.

Solución

$$g(\mathbf{x}, \mathbf{y}) = (x_1 x_2 x_3) \begin{pmatrix} 3 & 7 & 4 \\ -1 & 0 & -5 \\ 0 & 3 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \mathbf{x}^t A_g \mathbf{y},$$

$$q(\mathbf{x}) = (x_1 x_2 x_3) \begin{pmatrix} 3 & 3 & 1 \\ 3 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{x}^t A_q \mathbf{x}.$$

Observe que $A_q = \frac{1}{2} \left(A_g + A_g^t \right)$.

Dada la forma cuadrática real

$$q(\mathbf{x}) = (x_1)^2 + (x_2)^2 + 3(x_3)^2 + 6x_1x_2 + 4x_1x_3 - 10x_2x_3,$$

definida sobre un espacio vectorial V de dimensión tres y expresada en una cierta base B de V.

- 1 determine su expresión matricial en la base B,
- a halle una base respecto a la cual su matriz asociada sea diagonal y clasifíquela.

Solución

$$q(\mathbf{x}) = (x_1 x_2 x_3) \begin{pmatrix} 1 & 3 & 2 \\ 3 & 1 & -5 \\ 2 & -5 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

en la base B.

0

2

$$q(\mathbf{x}) = (x_1' x_2' x_3') \begin{pmatrix} 1 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & 904 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix},$$

en la base
$$\mathbf{u}_1=\left(\begin{array}{c}1\\0\\0\end{array}\right)_{\mathcal{B}},\,\mathbf{u}_2=\left(\begin{array}{c}-3\\1\\0\end{array}\right)_{\mathcal{B}},\,\mathbf{u}_3=\left(\begin{array}{c}17\\-11\\8\end{array}\right)_{\mathcal{B}}.$$

La forma cuadrática q tiene signatura (2,1) y por lo tanto es indefinida.

Dada la forma cuadrática real

$$q(\mathbf{x}) = 4(x_1)^2 + 4(x_2)^2 + 4(x_3)^2 - 2x_1x_2 + 2x_1x_3 - 2x_2x_3,$$

definida sobre un espacio vectorial V de dimensión tres y expresada en una cierta base B de V,

- 1 determine su expresión matricial en la base B.
- 2 Sabiendo que $\lambda=6$ es un valor propio de q, diagonalícela ortogonalmente hallando una base respecto a la cual su matriz asociada sea diagonal y clasifíquela.

Solución

0

$$q(\mathbf{x}) = (x_1 x_2 x_3) \begin{pmatrix} 4 & -1 & 1 \\ -1 & 4 & -1 \\ 1 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

en la base B.

$$q(\mathbf{x}) = (x_1' x_2' x_3') \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix}$$

en la base

2

$$\label{eq:u1} \boldsymbol{u}_1 = \left(\begin{array}{c} 1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{array} \right)_{B} \boldsymbol{u}_2 = \left(\begin{array}{c} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{array} \right)_{B} \boldsymbol{u}_3 = \left(\begin{array}{c} -1/\sqrt{6} \\ 1/\sqrt{6} \\ 2/\sqrt{6} \end{array} \right)_{B}.$$

La forma cuadrática q tiene signatura (3,0) y por lo tanto es definida positiva.

Dada la forma cuadrática real

$$q(\mathbf{x}) = (x_1 x_2) \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$

definida sobre un espacio vectorial V de dimensión tres y expresada en una cierta base B de V,

- diagonalícela ortogonalmente,
- obtenga su expresión canónica (indicando el cambio de base realizado) y clasifíquela.

Solución

0

$$q(\mathbf{x}) = (x_1'x_2') \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \end{pmatrix},$$

En la base
$$\mathbf{v}_1 = \left(\frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}}\right)_B^t$$
, $\mathbf{v}_2 = \left(\frac{1}{\sqrt{5}} \frac{-2}{\sqrt{5}}\right)_B^t$.

2

$$q(\mathbf{x}) = (x_1''x_2'') \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1'' \\ x_2'' \end{pmatrix},$$

en la base $\mathbf{u}_1 = \left(\frac{2}{\sqrt{10}} \frac{1}{\sqrt{10}}\right)_B^t$, $\mathbf{u}_2 = \left(\frac{1}{\sqrt{15}} \frac{-2}{\sqrt{15}}\right)_B^t$. La forma cuadrática q tiene signatura (1,1) y por lo tanto es indefinida.

Dada la forma cuadrática real

$$q(\mathbf{x}) = (x_1 x_2) \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$

definida sobre un espacio vectorial V de dimensión tres y expresada en una cierta base B de V, diagonalícela obteniendo una base de vectores conjugados.

Solución

$$q(\mathbf{x}) = (x_1'x_2') \begin{pmatrix} 1 & 0 \\ 0 & -6 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \end{pmatrix},$$

En la base $\mathbf{v}_1 = (1 \ 0)_B^t$, $\mathbf{v}_2 = (-2 \ 1)_B^t$.