

#### ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA

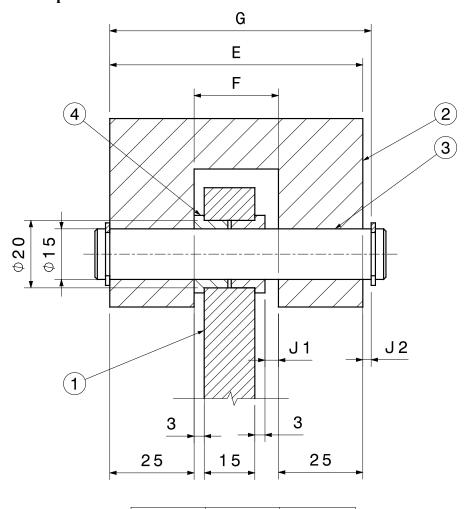
PRACTICA Nº T05 Semana 6

#### INGENIERÍA GRÁFICA

TEMA: 4.1.6 (Utilización de los sistemas de tolerancias)

#### **OBJETIVO DE LA PRÁCTICA:**

Comprender la necesidad de la acotación funcional con vistas a la fabricación y asegurar el perfecto funcionamiento del conjunto.


#### TAREAS A REALIZAR:

#### Práctica Acotación Funcional:

La figura corresponde a la bisagra de articulación. La parte superior 2 es la fija a la estructura y la inferior 1 es la móvil. El eje 3 no debe girar. Teniendo en cuenta los juegos indicados calcular las tolerancias de las cotas A, B, C, D, E, F y G.

#### **MATERIAL SUMINISTRADO:**

#### Vista isométrica de la pieza



|    | Max   | Min   |
|----|-------|-------|
| J1 | 0.2   | 0.034 |
| J2 | 0.248 | 0.1   |

#### Bibliografía:

UNE 1-120 Dibujos técnicos. Tolerancias de cotas lineales y angulares.

UNE 1-149-90 Dibujos técnicos. Principio de tolerancias fundamentales.

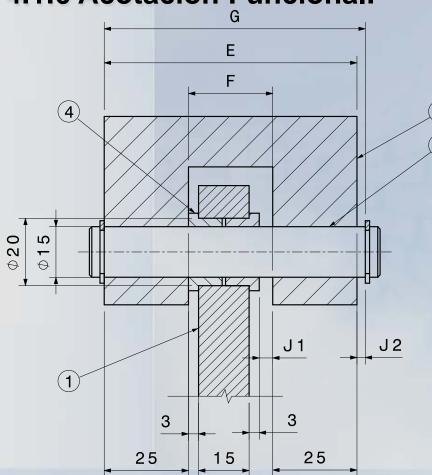
UNE-EN-22768-1,2 Tolerancias generales.



## Escuela Universitaria de Ingeniería Técnica Aeronáutica

## Expresión Gráfica en la Ingeniería

### INGENIERÍA GRÁFICA


- 4. INFORMACIÓN TÉCNICA.
- 4.1 Utilización de los Sistemas de Tolerancias. PRACTICAS
  - 4.1.1 Conceptos Generales de Tolerancias.
  - 4.1.2 Sistema de Tolerancia ISO.
  - 4.1.3 Tolerancias Geométricas.
  - 4.1.4 Operaciones con Cotas.
  - 4.1.5 Principio de Máximo Material.
  - 4.1.6 Acotación Funcional.
  - 4.1.7 Tolerancias Generales.



Javier Pérez Álvarez José Luis Pérez Benedito Santiago Poveda Martínez



### 4.1.6 Acotación Funcional.



|    | Max   | Min   |
|----|-------|-------|
| J1 | 0.2   | 0.034 |
| J2 | 0.248 | 0.1   |

Medidas nominales (mm):

$$A = 25$$

2

$$B = 15$$

$$C = 25$$

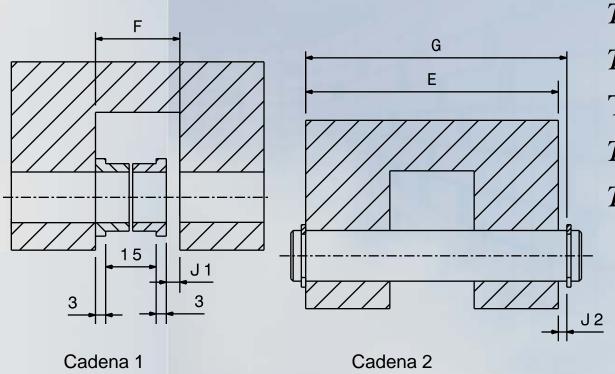
$$D = 3$$

$$F = 21$$

$$G = 71$$

$$E = 71$$

Tolerancia de juegos (mm):


$$TJ_1 = J_{1\text{max}} - J_{1\text{min}} = 0.2 - 0.034 = 0.166 \text{ mm}$$

$$TJ_2 = J_{2\text{max}} - J_{2\text{min}} = 0.248 - 0.1 = 0.148 \text{ mm}$$



### 4.1.6 Acotación Funcional.

Definición de Cadenas de Tolerancias



$$TJ_1 = TF + 2TD + TB$$

$$TJ_2 = TG + TE$$

Teniendo en cuenta que:

$$TE = TA + TF + TC$$

$$TA = TC$$



#### 4.1.6 Acotación Funcional.

Elección del Índice de Tolerancia:

| Val | ores | en | micras |
|-----|------|----|--------|
|     |      |    |        |

|           | IT7 | IT8 | IT9 | IT10 | ITII |
|-----------|-----|-----|-----|------|------|
| Hasta 3   | 10  | 14  | 25  | 40   | 60   |
| > 3 a 6   | 12  | 18  | 30  | 48   | 75   |
| >6a10     | 15  | 22  | 36  | 58   | 90   |
| > 10 a 18 | 18  | 27  | 43  | 70   | 110  |
| > 18 a 30 | 21  | 33  | 52  | 84   | 130  |
| > 30 a 50 | 25  | 39  | 62  | 100  | 160  |
| > 50 a 80 | 30  | 46  | 74  | 120  | 190  |

Para J1 TD (IT9) = 0.025 mm TB (IT8) = 0.027 mm 
$$\rightarrow$$
 ΣTi = 161 μm TF (IT10) = 0.084 mm

Para J2
TE (IT9)=0.074 mm
TG (IT9)=0.074 mm 
$$\rightarrow \Sigma Ti = 148 \mu m$$

Pero como:

TE=TA+TF+TC 
$$\rightarrow$$
 TF < TE  $\rightarrow$  Para J1 TD (IT10) = 0.040 mm TB (IT8) = 0.027 mm  $\rightarrow$   $\Sigma$ Ti = 159  $\mu$ m TF (IT9) = 0.052 mm

Como consecuencia TA = TC = 0.011 mm. Valor muy bajo

GIE: VGG OCW UPM



### 4.1.6 Acotación Funcional.

Elección del Índice de Tolerancia:

Para J1

TD (IT10) = 0.040 mm TB (IT9) = 0.043 mm 
$$\rightarrow \Sigma$$
Ti = 156  $\mu$ m  $\rightarrow \Sigma$ Ti =

Para J2

TE (IT9)=0.074 mm 
$$\rightarrow \Sigma Ti = 148 \mu m$$

Luego como:

TE=TA+TF+TC → TA = TC = 0.0205 mm. Valor de tolerancia NO ISO

A la vista de las tablas se puede poner TA=TC= 0.021 (IT7) valor de tolerancia ISO lo que implica que como TE=TA+TF+TC  $\rightarrow$  TE = 0.075 mm



### 4.1.6 Acotación Funcional.

Elección del Índice de Tolerancia:

Pero teniendo en cuenta que:

$$TJ_2 = TG + TE \rightarrow 0.148 = 0.075 + TG \rightarrow TG = 0.073$$

Lo que implica que tanto TE como TG no serán tolerancias ISO, resultando:

| Dimensión | IT     | Tolerancia (mm) |
|-----------|--------|-----------------|
| А         | 7      | 0.021           |
| В         | 9      | 0.043           |
| С         | 7      | 0.021           |
| D         | 10     | 0.040           |
| E         | No ISO | 0.075           |
| F         | 8      | 0.033           |
| G         | No ISO | 0.073           |

GIE: VGG



### 4.1.6 Acotación Funcional.

Elección de la Posición de Tolerancia:

Teniendo en cuenta que TE no es tolerancia ISO no será necesario una asignación de posición estándar para esta dimensión, lo que permite escribir:

$$F = 21H8 \begin{pmatrix} +0.033 \\ +0.0 \end{pmatrix}$$

$$A = 25h7 \begin{pmatrix} +0.0 \\ -0.021 \end{pmatrix}$$

$$C = 25h7 \begin{pmatrix} +0.0 \\ -0.021 \end{pmatrix}$$

$$Ex = Ax + Fx + Cx = 21.033 + 25.0 + 25.0 = 71.033$$

$$Em = Am + Fm + Cm = 21.0 + 24.979 + 24.979 = 70.958$$

$$E = 71 + 0.033 \\ -0.042$$



### 4.1.6 Acotación Funcional.

Elección de la Posición de Tolerancia:

Teniendo en cuenta que:

$$J_2 x = Gx - Em \rightarrow Gx = 0.248 + 70.958 = 71.206$$

$$J_2 m = \text{Gm} - \text{Ex} \rightarrow \text{Gm} = 0.1 + 71.033 = 71.133$$

$$G = 71 \begin{pmatrix} +0.206 \\ +0.133 \end{pmatrix}$$



### 4.1.6 Acotación Funcional.

Elección de la Posición de Tolerancia:

Para el resto de las dimensiones:

$$B = 15h9 \begin{pmatrix} +0.0 \\ -0.043 \end{pmatrix}$$

$$J_1 x = Fx - Bm - 2Dm \rightarrow Dm = \frac{21.033 - 14.957 - 0.195}{2} = 2.9405$$

$$J_1 m = \text{Fm} - \text{Bx} - 2\text{Dx} \rightarrow \text{Dx} = \frac{21.0 - 15.0 - 0.039}{2} = 2.9805$$

$$D = 3 - 0.0195 - 0.0595$$



### 4.1.6 Acotación Funcional.

Elección de la Posición de Tolerancia:

| Dimensión | Pos ISO |
|-----------|---------|
| Α         | h7      |
| В         | h9      |
| С         | h7      |
| D         | No ISO  |
| E         | No ISO  |
| F         | H8      |
| G         | No ISO  |

GIE: VGG

**OCW UPM**