BASIC FLUVIAL GEOMORPHOLOGY

Marta González del Tánago

E.T.S. Ingenieros de Montes

Universidad Politécnica de Madrid

BASIC FLUVIAL GEOMORPHOLOGY

- •Interest of the FluvialGeomorphology in the river restoration projects
- •Morphological analysis of the rivers
- •The sediments in the fluvial processes
- •The river in equilibrium: natural dynamics
- •Dominant discharge concept
- •Response of rivers to natural/human disturbances

Why the Fluvial Geomorphology is important in river restoration

Use and abuse of rivers

- •Physical degradation is one of the most important problems of river ecosystems, affecting their ecological status by means of:
 - Lost of natural forms and processes
 - Unwanted erosion and sedimentation processes
 - Decrease of habitat quality and biodiversity
 - Lost of environmental values of rivers

Why the Fluvial Geomorphology is important in river restoration

- •The geomorphological analysis of rivers helps to:
 - •Identify problems related to the physical degradation
 - •Interpretate causes and consequences
 - •Propose alternatives for enhancing and restoring rivers

Analysis of Fluvial Forms

FORMS:

- Longitudinal Profile
- Pattern and Sinuosity
- Hydraulic geometry
- Sediments and Bed forms

VARIABLES RELATED TO THE LONGITUDINAL PROFILE OF RIVERS

- •The <u>slope</u> of the channel is one of the most important hydraulic variables, determining the hydraulic power and channel stability
- The slope is related to the <u>water velocity</u> and the <u>shear stress</u>
- •It is related to the sediment size:

$$S = 18(\frac{d}{A_d})^{0.6}$$
 S: Slope (m/m)

$$A_d: \text{ Drainage area(milla }^2)$$
 d: Medium diameter of sediments (mm)

HIDRAULIC GEOMETRY $w = C_a Q^a \qquad Q = w du$ $d = C_b Q^b \qquad C_a C_b C_c = 1$ $u = C_c Q^c \qquad a + b + c = 1$ At-a-station: a = 0.26 b = 0.40 c = 0.34Figure 16-32. At-a-station curves and rating curve for Green River at Warren Bridge, Wyoming.

HIDRAULIC GEOMETRY

$$w = C_a Q^a$$
 $Q = w du$
 $d = C_b Q^b$ $C_a C_b C_c = 1$
 $u = C_c Q^c$ $a + b + c = 1$

Downstream, at bankfull:

$$a = 0.39 - 0.60$$

 $b = 0.29 - 0.40$
 $c = 0.09 - 0.28$

Figure 16-34 Downstream change of width, depth, and velocity with bankfull discharge, upper Green River basin, Wyoming.

SEDIMENTS IN RIVERS

They come from <u>watershed erosion or channel erosion</u> and determine the turbidity of the water, the size of the substratum and the slope of the channel banks

	Transport	Origin
Wash load	Suspension	Watershed erosion Channel erosion (fine particles)
Bed load	Siltation	Channel erosion (coarse particles) Bed erosion

- •Cohesive materials
- •Non-cohesive materials ——
- •Sandy Rivers
- •Gravel-bed Rivers

GRAVEL-BED RIVERS

Gravel bars and islands modify the roughness of the channel and increase the **diversity of hydraulic conditions** (physical habitats)

FLUVIAL RESPONSE

Lane's equation (1955) for predicting fluvial responses:

$$Q * S \approx Q_s * D_{50}$$

FLUVIAL RESPONSE

$$Q * S \approx Q_s * D_{50}$$

Table 1.2 Channel response to natural or man induced changes.

(+ = increase; - = decrease; above line = control; below line = response)

NATURAL

Meander cut-offs

 $S^+Q_+ \leftrightarrow Qs_+D_+$ $S_+Q_- \leftrightarrow Qs^+D_-$

down

Landslide:

Large sustained supply

 $S^+Q_{_+} \longleftrightarrow Qs_{_+}D_{_+}$

up down

 $S_+Q \leftrightarrow Qs^{++}D$

Small limited supply

 $S_+Q_. \leftrightarrow Qs^+D_.$

FLUVIAL RESPONSE

 $Q * S \approx Q_s * D_{50}$

Table 1.2 Channel response to natural or man induced changes. (+ = increase; - = decrease; above line = control; below line = response)

	ARTIFICIAL Dam construction	$SQ^. \leftrightarrow Qs^.D_+$	
	Weir construction	$S^{\cdot}Q_{\cdot} \leftrightarrow Qs_{\cdot}D_{\cdot}$	up
		$SQ_+ \leftrightarrow QsD_+$	down
	Weir failure	$\mathbb{S}^+ \mathbb{Q}_+ \longleftrightarrow \mathbb{Q} \mathbb{S}_+ \mathbb{D}_+$	up 🗼
		$S_+Q \leftrightarrow Qs^+D$	down
	Channel straightening	$S^+Q_+ \leftrightarrow Qs_+D_+$	up
		$S_+Q \leftrightarrow Q_S^+D$	down
	Channel dredging and/or gravel mining	$S^+Q_+ \leftrightarrow Qs_+D_+$	up
graver	graver mining	$S^{-}Q_{\cdot} \leftrightarrow Qs_{\cdot}D_{\cdot}$	centre
		$\$.Q_+ \leftrightarrow Q_\$.D_+$	down
	Interbasin transfers	$S^+Q_+ \leftrightarrow Qs_+D_+$	up Turnel/
	(flows above sediment transport threshold)	$S_{\cdot}Q^{++} \leftrightarrow Qs_{+}D_{+}$	down

BASIC FLUVIAL GEOMORPHOLOGY

- •Interest of the FluvialGeomorphology in river restoration projects
- •Morphological analysis of the rivers
- •The sediments in the fluvial processes
- •The river in equilibrium: natural dynamics
- •Dominant discharge concept
- •Response of rivers to natural/human disturbances